Your browser doesn't support javascript.
loading
Poly(Ionic Liquid) Double-Network Elastomers with High-Impact Resistance Enhanced by Cation-π Interactions.
Li, Qingning; Li, Weizheng; Liu, Ziyang; Zheng, Sijie; Wang, Xiaowei; Xiong, Jiaofeng; Yan, Feng.
Afiliação
  • Li Q; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Li W; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Liu Z; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Zheng S; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Wang X; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Xiong J; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Yan F; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
Adv Mater ; 36(13): e2311214, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38150638
ABSTRACT
With the continuous development of impact protection materials, lightweight, high-impact resistance, flexibility, and controllable toughness are required. Here, tough and impact-resistant poly(ionic liquid) (PIL)/poly(hydroxyethyl acrylate) (PHEA) double-network (DN) elastomers are constructed via multiple cross-linking of polymer networks and cation-π interactions of PIL chains. Benefiting from the strong noncovalent cohesion achieved by the cation-π interactions in PIL chains, the prepared PIL DN elastomers exhibit extraordinary compressive strength (95.24 ± 2.49 MPa) and toughness (55.98 ± 0.66 MJ m-3) under high-velocity impact load (5000 s-1). The synthesized PIL DN elastomer combines strength and flexibility to protect fragile items from impact. This strategy provides a new research idea in the field of the next generation of safety and protective materials.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Alemanha