Your browser doesn't support javascript.
loading
An Approach to Track and Analyze the Trend of Antimicrobial Resistance Using Python: A Pilot Study for Anand, Gujarat, India-May 2022-August 2023.
Khound, Priyanshu; Pandya, Himanshu; Patel, Rupal; Patel, Naimika; Darji, Siddhi A; Trivedi, Purvi; Mehta, Vandan; Raulji, Avani; Banerjee, Devjani.
Afiliação
  • Khound P; School of Technology, GSFC University, Vadodara, Gujarat, India.
  • Pandya H; Department of Microbiology, Pramukhswami Medical College, Bhaikaka University, Karamsad Medical College, Anand, Gujarat, India.
  • Patel R; Department of Microbiology, Pramukhswami Medical College, Bhaikaka University, Karamsad Medical College, Anand, Gujarat, India.
  • Patel N; Department of Microbiology, Pramukhswami Medical College, Bhaikaka University, Karamsad Medical College, Anand, Gujarat, India.
  • Darji SA; School of Sciences, GSFC University, Vadodara, Gujarat, India.
  • Trivedi P; Dr. Vikram Sarabhai Institute of Cell and Molecular Biology Department, The M S University of Baroda, Vadodara, Gujarat, India.
  • Mehta V; School of Sciences, GSFC University, Vadodara, Gujarat, India.
  • Raulji A; School of Sciences, GSFC University, Vadodara, Gujarat, India.
  • Banerjee D; Department of Microbiology, Pramukhswami Medical College, Bhaikaka University, Karamsad Medical College, Anand, Gujarat, India.
Microb Drug Resist ; 30(1): 1-20, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38150701
ABSTRACT
The present work deals with the analysis and monitoring of bacterial resistance in using Python for the state of Gujarat, India, where occurrences of drug-resistant bacteria are prevalent. This will provide an insight into the portfolio of drug-resistant bacteria reported, which can be used to track resistance behavior and to suggest a treatment regime for the particular bacteria. The present analysis has been done using Python on Jupyter Notebook as the integrated development environment and its data analysis libraries such as Pandas, Seaborn, and Matplotlib. The data have been loaded from excel file using Pandas and cleaned to transform features into required format. Seaborn and Matplotlib have been used to create data visualizations and represent the data inexplicable manner using graphs, plots, and tables. This program can be used to study disaster epidemiology, tracking, analyzing, and surveillance of antimicrobial resistance with a proper system integration approach.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções Bacterianas / Antibacterianos Limite: Humans Idioma: En Revista: Microb Drug Resist Assunto da revista: MICROBIOLOGIA / TERAPIA POR MEDICAMENTOS Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções Bacterianas / Antibacterianos Limite: Humans Idioma: En Revista: Microb Drug Resist Assunto da revista: MICROBIOLOGIA / TERAPIA POR MEDICAMENTOS Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia País de publicação: Estados Unidos