Your browser doesn't support javascript.
loading
In-sample stability and postsampling analysis of 21 illicit drugs, their metabolites and cotinine in wastewater.
Che, Xinfeng; Liu, Peipei; Ding, Yan; Tao, Wenjia; Zheng, Xiaoyu; Di, Bin; Qiao, Hongwei.
Afiliação
  • Che X; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China.
  • Liu P; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193
  • Ding Y; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China.
  • Tao W; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China.
  • Zheng X; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193
  • Di B; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China. Electronic address: dibin@cpu.edu.cn.
  • Qiao H; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193
Ecotoxicol Environ Saf ; 270: 115900, 2024 Jan 15.
Article em En | MEDLINE | ID: mdl-38176186
ABSTRACT
A thorough understanding of the degradation of chemical biomarkers in wastewater after the sampling is critical in the surveillance of illicit drug use based on the back-calculation technique. Herein, three temperatures, eight groups of matrices, and acidification were applied to simulate the preservation condition of 21 illicit drugs, their metabolites, and cotinine for a 240-day stability study. It was proved that the temperature, matrices, and acidification play vital roles in their stability in wastewater. Most of them demonstrated high stability (transformation rates < 20%) during room temperature for 45 days, and the transformation rates decreased while the storage temperature reduced. The stability of the target compounds such as cocaine (COC), 6-monoacetylmorphine (6-MAM), and amphetamine (AM) is influenced by matrices. Acidification prevented the majority of analytes from transforming, making it a feasible solution for preservation after sampling. A model that combined the effects of temperature and matrix was developed to back-calculate the concentration of target compounds during the postsampling process. The feasibility of this model was validated by correcting the loss of COC and 6-MAM from 24.2% and 16.2% to 2.98% and 2.77%. This study simulated a typical large-scale sampling and storage scenario. The effect of the temperature, pH, and matrix on in-sample stability and the postsampling analysis of selected target compounds was investigated for the first time in this study.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Drogas Ilícitas / Cocaína Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Drogas Ilícitas / Cocaína Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda