Your browser doesn't support javascript.
loading
Rational Design of a Hydrophilic Core-Hydrophobic Shell Yarn-Based Solar Evaporator with an Underwater Aerophilic Surface for Self-Floating and High-Performance Dynamic Water Purification.
Li, Ailin; Liu, Wendi; Yu, Aixin; Hao, Yunna; Chen, Wenjing; Zheng, Maorong; Zhang, Chentian; Liu, Huijie; Yu, Jianyong; Wang, Liming; Qin, Xiaohong.
Afiliação
  • Li A; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
  • Liu W; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
  • Yu A; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
  • Hao Y; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
  • Chen W; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
  • Zheng M; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
  • Zhang C; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
  • Liu H; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
  • Yu J; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China.
  • Wang L; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
  • Qin X; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
Nano Lett ; 24(3): 1034-1043, 2024 Jan 24.
Article em En | MEDLINE | ID: mdl-38190456
ABSTRACT
Interfacial solar vapor generation holds great promise for alleviating the global freshwater crisis, but its real-world application is limited by the efficiently choppy water evaporation and industrial production capability. Herein, a self-floating solar evaporator with an underwater aerophilic surface is innovatively fabricated by weaving core-shell yarns via mature weaving techniques. The core-shell yarns possess capillary water channels in the hydrophilic cotton core and can trap air in the hydrophobic electrospinning nanofiber shell when submerged underwater, simultaneously realizing controllable water supplies, stable self-flotation, and great thermal insulation. Consequently, the self-floating solar evaporator achieves an evaporation rate of 2.26 kg m-2 h-1 under 1 sun irradiation, with a reduced heat conduction of 70.18 W m-2. Additionally, for the first time, a solar evaporator can operate continuously in water with varying waveforms and intensities over 24 h, exhibiting an outdoor cumulative evaporation rate of 14.17 kg m-2 day-1.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China