Your browser doesn't support javascript.
loading
Degree of methyl esterification: A key factor for the encapsulation of icaritin with pectin.
Chen, Yipeng; Zhao, Tiantian; Cheng, Lina; Yang, Bao; Wen, Lingrong.
Afiliação
  • Chen Y; Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Gua
  • Zhao T; Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
  • Cheng L; Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
  • Yang B; Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Gua
  • Wen L; Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Gua
Int J Biol Macromol ; 260(Pt 1): 129361, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38218280
ABSTRACT
Pectin is a promising nano-carrier. The degree of methyl esterification (DM) influences the physiochemical properties of pectin. However, the effect of DM on the encapsulation capacity of pectin remains unclear. In this work, low methyl-esterified pectin (LMP) and high methyl-esterified pectin (HMP) were prepared. The molecular weight, rheological properties of these pectins with various DM levels were determined. Then icaritin/pectin micelles (IPMs) were prepared using HMP and LMP. Notably, higher loading capacities (18.75-20.12 %) were observed in HMP-IPMs compared to LMP-IPMs (15.72-16.64 %). Furthermore, LMP-IPMs demonstrated a DM-dependent reduction in particle sizes, ranging from 449 to 527 nm. In contrast, the particle sizes of HMP-IPMs varied between 342 and 566 nm, with smaller particle sizes observed in HMP-IPMs at higher DM levels. A significant positive correlation was found between DM and the formation of IPMs, including encapsulation efficiency, loading capacity, Zeta potential, and polydispersity index. Alkali de-esterification showed a weak impact on the pectin structure. Hydroxyl groups like 7-OH and 5-OH of icaritin might be involved in the formation of IPMs. The hydrogen-bond interactions between pectin and icaritin could be enhanced as DM increased.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Flavonoides / Pectinas Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Flavonoides / Pectinas Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article