Your browser doesn't support javascript.
loading
Unconventional Charge-Density-Wave Gap in Monolayer NbS2.
Knispel, Timo; Berges, Jan; Schobert, Arne; van Loon, Erik G C P; Jolie, Wouter; Wehling, Tim; Michely, Thomas; Fischer, Jeison.
Afiliação
  • Knispel T; II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany.
  • Berges J; U Bremen Excellence Chair, Bremen Center for Computational Materials Science, and MAPEX Center for Materials and Processes, University of Bremen, D-28359 Bremen, Germany.
  • Schobert A; I. Institute of Theoretical Physics, Universität Hamburg, D-22607 Hamburg, Germany.
  • van Loon EGCP; NanoLund and Division of Mathematical Physics, Department of Physics, Lund University, SE-22100 Lund, Sweden.
  • Jolie W; II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany.
  • Wehling T; I. Institute of Theoretical Physics, Universität Hamburg, D-22607 Hamburg, Germany.
  • Michely T; The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany.
  • Fischer J; II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany.
Nano Lett ; 24(4): 1045-1051, 2024 Jan 31.
Article em En | MEDLINE | ID: mdl-38232959
ABSTRACT
Using scanning tunneling microscopy and spectroscopy, for a monolayer of transition metal dichalcogenide H-NbS2 grown by molecular beam epitaxy on graphene, we provide unambiguous evidence for a charge density wave (CDW) with a 3 × 3 superstructure, which is not present in bulk NbS2. Local spectroscopy displays a pronounced gap on the order of 20 meV at the Fermi level. Within the gap, low-energy features are present. The gap structure with its low-energy features is at variance with the expectation for a gap opening in the electronic band structure due to a CDW. Instead, comparison with ab initio calculations indicates that the observed gap structure must be attributed to combined electron-phonon quasiparticles. The phonons in question are the elusive amplitude and phase collective modes of the CDW transition. Our findings advance the understanding of CDW mechanisms in 2D materials and their spectroscopic signatures.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Estados Unidos