[Blue light and intraocular lenses (IOLs): Beliefs and realities]. / Lumière bleue et implants intraoculaires : croyances et réalités.
J Fr Ophtalmol
; 47(2): 104043, 2024 Feb.
Article
em Fr
| MEDLINE
| ID: mdl-38241770
ABSTRACT
The first intraocular lenses (IOLs) used for cataract surgery transmitted both ultraviolet (UV) radiation and visible light to the retina. Colorless UV-blocking IOLs were introduced and rapidly adopted in the 1980s. Yellow-tinted blue-blocking (also known as blue-filtering) IOLs were marketed in the early 1990s. Blue-blocking IOLs were intended to simulate age-related crystalline lens yellowing to reduce the cyanopsia that some patients experienced after cataract surgery. When blue-filtering IOLs were introduced in North America, however, blue-blocking chromophores were advocated as a way to protect patients from age-related macular degeneration (AMD) despite the lack of evidence that normal environmental light exposure causes AMD. The "blue light hazard" is a term that describes the experimental finding that acute, abnormally intense light exposures are potentially more phototoxic to the retina when short rather than long wavelengths are used. Thus, in brief exposures to intense light sources such as welding arcs, ultraviolet radiation is more hazardous than blue light, which is more hazardous than longer wavelength green or red light. International commissions have cautioned that the blue light hazard does not apply to normal indoor or outdoor light exposures. Nonetheless, the hazard is used for commercial purposes to suggest misleadingly that ambient environmental light can cause acute retinal phototoxicity and increase the risk of AMD. Very large epidemiological studies show that blue-blocking IOLs do not reduce the risk or progression of AMD. Additionally, blue-filtering IOLs or spectacles cannot decrease glare disability, because they decrease image and glare illuminance in the same proportion. Blue light is essential for older adults' scotopic photoreception needed to reduce the risk of nighttime falling and related injuries. It is also critical for circadian photoreception that is essential for good health, sleep and cognitive performance. Unfortunately, age-related pupillary miosis, retinal rod and ganglion cell photoreceptor degeneration and decreased outdoor activity all reduce the amount of healthful blue light available to older adults. Blue-restricting IOLs further reduce the available blue light at a time when older adults need it most. Patients and ophthalmologists are exposed to hypothesis-based advertisements for blue-filtering optical devices that suppress short wavelength light critical for vision in dim lighting and for good physical and mental health. Spectacle and intraocular lens selections should be based on scientific fact, not conjecture. Ideal IOLs should improve photoreception rather than limit it permanently. Practice efficiency, surgical convenience and physician-manufacturer relationships may eliminate a patient's opportunity to choose between colorless blue-transmitting IOLs and yellow-tinted, blue-restricting IOLs. Cataract surgeons ultimately determine whether their patients have the opportunity to make an informed choice about their future photoreception.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Catarata
/
Lentes Intraoculares
/
Degeneração Macular
Limite:
Aged
/
Humans
Idioma:
Fr
Revista:
J Fr Ophtalmol
Ano de publicação:
2024
Tipo de documento:
Article
País de publicação:
França