Your browser doesn't support javascript.
loading
Biosurfactants-based mixed polycyclic aromatic hydrocarbon degradation: From microbial community structure toward non-targeted metabolomic profile determination.
Phulpoto, Irfan Ali; Qi, Zhang; Qazi, Muneer Ahmed; Yu, Zhisheng.
Afiliação
  • Phulpoto IA; College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 256606, Shandong Province, PR China; Institute of Microbiology, Faculty of Natural Scie
  • Qi Z; College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China.
  • Qazi MA; Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mir's 66020, Sindh, Pakistan.
  • Yu Z; College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 256606, Shandong Province, PR China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology
Environ Int ; 184: 108448, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38246038
ABSTRACT
Biosurfactants-based bioremediation is considered an efficient technology to eliminate environmental pollutants including polycyclic aromatic hydrocarbons (PAHs). However, the precise role of rhamnolipids or lipopeptide-biosurfactants in mixed PAH dissipation, shaping microbial community structure, and influencing metabolomic profile remained unclear. In this study, results showed that the maximum PAH degradation was achieved in lipopeptide-assisted treatment (SPS), where the pyrene and phenanthrene were substantially degraded up to 74.28 % and 63.05 % respectively, as compared to rhamnolipids (SPR) and un-aided biosurfactants (SP). Furthermore, the high throughput sequencing analysis revealed a significant change in the PAH-degrading microbial community, with Proteobacteria being the predominant phylum (>98 %) followed by Bacteroidota and Firmicutes in all the treatments. Moreover, Pseudomonas and Pannonibacter were found as highly potent bacterial genera for mixed PAH degradation in SPR, SPS, and SP treatments, nevertheless, the abundance of the genus Pseudomonas was significantly enhanced (>97 %) in SPR treatment groups. On the other hand, the non-targeted metabolomic profile through UHPLC-MS/MS exhibited a remarkable change in the metabolites of amino acids, carbohydrates, and lipid metabolisms by the input of rhamnolipids or lipopeptide-biosurfactants whereas, the maximum intensities of metabolites (more than two-fold) were observed in SPR treatment. The findings of this study suggested that the aforementioned biosurfactants can play an indispensable role in mixed PAH degradation as well as seek to offer new insights into shifts in PAH-degrading microbial communities and their metabolic function, which can guide the development of more efficient and targeted strategies for complete removal of organic pollutants such as PAH from the contaminated environment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrocarbonetos Policíclicos Aromáticos / Poluentes do Solo / Poluentes Ambientais / Microbiota Idioma: En Revista: Environ Int Ano de publicação: 2024 Tipo de documento: Article País de publicação: HOLANDA / HOLLAND / NETHERLANDS / NL / PAISES BAJOS / THE NETHERLANDS

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrocarbonetos Policíclicos Aromáticos / Poluentes do Solo / Poluentes Ambientais / Microbiota Idioma: En Revista: Environ Int Ano de publicação: 2024 Tipo de documento: Article País de publicação: HOLANDA / HOLLAND / NETHERLANDS / NL / PAISES BAJOS / THE NETHERLANDS