Speech Emotion Recognition Applied to Real-World Medical Consultation.
Stud Health Technol Inform
; 310: 1121-1125, 2024 Jan 25.
Article
em En
| MEDLINE
| ID: mdl-38269989
ABSTRACT
Since 2020, the COVID-19 epidemic has changed our lives in healthcare behaviors. Forced to wear masks influenced doctor-patient interaction perceptions truly, thus, to build a satisfying relationship is not just empathize with facial expressions. The voice becomes more important for the sake of conquering the burden of masks. Hence, verbal and non-verbal communication will be crucial criteria for doctor-patient interaction during medical consultations and other conversations. In these years, speech emotion recognition has been a popular research domain. In spite of abundant work conducted, nonverbal emotion recognition in medical scenarios is still required to reveal. In this study, we investigate YAMNet transfer learning on Chinese Mandarin speech corpus NTHU-NTUA Chinese Interactive Emotion Corpus (NNIME) and use real-world dermatology clinic recording to test the generalization capability. The results showed that the accuracy validated on NNIME data was 0.59 for activation prediction and 0.57 for valence. Furthermore, the validation accuracy on the doctor-patient dataset was 0.24 for activation and 0.58 for valence, respectively.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fala
/
Voz
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Stud Health Technol Inform
Assunto da revista:
INFORMATICA MEDICA
/
PESQUISA EM SERVICOS DE SAUDE
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Taiwan
País de publicação:
Holanda