Your browser doesn't support javascript.
loading
Self-Assembled Monolayer and Nanoparticles Coenhanced Fragmented Silver Nanowire Network Memristor.
Chen, Weizhen; Mou, Zongxia; Xin, Yijia; Li, Haichuan; Wang, Tianqi; Chen, Yaofei; Chen, Lei; Yang, Bo-Ru; Chen, Zhe; Luo, Yunhan; Liu, Gui-Shi.
Afiliação
  • Chen W; Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Physics & Optoelectronic Engine
  • Mou Z; Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
  • Xin Y; Department of Physics, Jinan University, Guangzhou 510632, China.
  • Li H; Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Physics & Optoelectronic Engine
  • Wang T; Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Physics & Optoelectronic Engine
  • Chen Y; Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Physics & Optoelectronic Engine
  • Chen L; Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Physics & Optoelectronic Engine
  • Yang BR; State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China.
  • Chen Z; Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Physics & Optoelectronic Engine
  • Luo Y; Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Physics & Optoelectronic Engine
  • Liu GS; Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Physics & Optoelectronic Engine
ACS Appl Mater Interfaces ; 16(5): 6057-6067, 2024 Feb 07.
Article em En | MEDLINE | ID: mdl-38285926
ABSTRACT
Silver nanowire (AgNW) networks with self-assembled structures and synaptic connectivity have been recently reported for constructing neuromorphic memristors. However, resistive switching at the cross-point junctions of the network is unstable due to locally enhanced Joule heating and the Gibbs-Thomson effect, which poses an obstacle to the integration of threshold switching and memory function in the same AgNW memristor. Here, fragmented AgNW networks combined with Ag nanoparticles (AgNPs) and mercapto self-assembled monolayers (SAMs) are devised to construct memristors with stable threshold switching and memory behavior. In the above design, the planar gaps between NW segments are for resistive switching, the AgNPs act as metal islands in the gaps to reduce threshold voltage (Vth) and holding voltage (Vhold), and the SAMs suppress surface atom diffusion to avoid Oswald ripening of the AgNPs, which improves switching stability. The fragmented NW-NP/SAM memristors not only circumvent the side effects of conventional NW-stacked junctions to provide durable threshold switching at >Vth but also exhibit synaptic characteristics such as long-term potentiation at ultralow voltage (≪Vth). The combination of NW segments, nanoparticles, and SAMs blazes a new trail for integrating artificial neurons and synapses in AgNW network memristors.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article