Frequency properties of channeled spectropolarimetry: an information theory perspective.
Opt Express
; 32(3): 3735-3750, 2024 Jan 29.
Article
em En
| MEDLINE
| ID: mdl-38297588
ABSTRACT
Channeled spectropolarimetry (CSP) has emerged as a notable technique due to its unique capacity to instantaneously measure either the polarization state of light or the Mueller matrix of a sample over a broad spectral range. Leveraging the quasi-linear relation between phase retardances of thick birefringent retarders and wavenumber, the target signal undergoes wavelength encoding. For the first time, we present a theoretical framework for the general CSP from a perspective of information theory. This framework comprehensively addresses the frequency properties of CSP, encompassing signal bandwidth, modulation frequency, sampling relationships, and filter window width during the demodulation process. Drawing from the frequency properties of CSP, we establish a theoretical foundation that informs the design of versatile CSPs and evaluates their measurement capabilities. Simulations for both Stokes CSP and Mueller CSP validate the efficacy of the proposed approach.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Opt Express
Assunto da revista:
OFTALMOLOGIA
Ano de publicação:
2024
Tipo de documento:
Article
País de publicação:
Estados Unidos