Your browser doesn't support javascript.
loading
Long-distance transmission of arbitrary quantum states between spatially separated microwave cavities.
Opt Express ; 32(3): 4728-4744, 2024 Jan 29.
Article em En | MEDLINE | ID: mdl-38297667
ABSTRACT
Long-distance transmission between spatially separated microwave cavities is a crucial area of quantum information science and technology. In this work, we present a method for achieving long-distance transmission of arbitrary quantum states between two microwave cavities, by using a hybrid system that comprises two microwave cavities, two nitrogen-vacancy center ensembles (NV ensembles), two optical cavities, and an optical fiber. Each NV ensemble serves as a quantum transducer, dispersively coupling with a microwave cavity and an optical cavity, which enables the conversion of quantum states between a microwave cavity and an optical cavity. The optical fiber acts as a connector between the two optical cavities. Numerical simulations demonstrate that our method allows for the transfer of an arbitrary photonic qubit state between two spatially separated microwave cavities with high fidelity. Furthermore, the method exhibits robustness against environmental decay, parameter fluctuations, and additive white Gaussian noise. Our approach offers a promising way for achieving long-distance transmission of quantum states between two spatially separated microwave cavities, which may have practical applications in networked large-scale quantum information processing and quantum communication.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2024 Tipo de documento: Article