Your browser doesn't support javascript.
loading
Mutation of conserved histidine residues of dengue virus envelope protein impairs viral like particle maturation and secretion.
Rani, N Veena; Baig, Mirza Sarwar; Pathak, Bharti; Kapoor, Neera; Krishnan, Anuja.
Afiliação
  • Rani NV; School of Sciences, IGNOU, New Delhi 110068, India.
  • Baig MS; Centre for Virology, Jamia Hamdard, New Delhi 110062, India; Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India.
  • Pathak B; Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India.
  • Kapoor N; School of Sciences, IGNOU, New Delhi 110068, India.
  • Krishnan A; Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India. Electronic address: anuja.krishnan@jamiahamdard.ac.in.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119682, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38301907
ABSTRACT
Dengue virus (DENV) envelope protein plays crucial role in virus entry and maturation of virus during infection. Maturation of DENV occurs in the trans Golgi network at slightly acidic pH which is close to pKa of histidine. When exposed to the acidic environment of the late secretory pathway, dengue virus particles go through a significant conformational change, whereby interactions of structural proteins envelope (E) and prM proteins are reorganised and enable furin protease to cleave prM resulting in mature virus. In order to study the role of histidine of E protein in DENV maturation, we mutated 7 conserved histidine residues of envelope protein and assessed the percent of budding using viral like particle (VLP) system. Histidine mutants; H144A, H244A, H261A and H282A severely disrupted VLP formation without any significant change in expression in cell and its oligomerization ability. Treatment with acidotropic amine reversed the defect for all 4 mutants suggesting that these histidines could be involved in maturation and release. Over expression of capsid protein slightly enhanced VLP release of H244A and H261A. Similarly, furin over expression increased VLP release of these mutants. Co-immunoprecipitation studies revealed that prM and E interaction is lost for H244A, H261A and H282A mutants at acidic pH but not at neutral pH indicating that they could be involved in histidine switch during maturation at acidic pH. Detailed analysis of the mutants could provide novel insights on the interplay of envelop protein during maturation and aid in target for drug development.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas do Envelope Viral / Dengue / Vírus da Dengue Limite: Humans Idioma: En Revista: Biochim Biophys Acta Mol Cell Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas do Envelope Viral / Dengue / Vírus da Dengue Limite: Humans Idioma: En Revista: Biochim Biophys Acta Mol Cell Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia