Your browser doesn't support javascript.
loading
Organic Input to Titan's Subsurface Ocean Through Impact Cratering.
Neish, Catherine; Malaska, Michael J; Sotin, Christophe; Lopes, Rosaly M C; Nixon, Conor A; Affholder, Antonin; Chatain, Audrey; Cockell, Charles; Farnsworth, Kendra K; Higgins, Peter M; Miller, Kelly E; Soderlund, Krista M.
Afiliação
  • Neish C; Department of Earth Sciences, The University of Western Ontario, London, Ontario, Canada.
  • Malaska MJ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA.
  • Sotin C; Laboratoire de Planétologie et Géosciences, Nantes Université, Univ Angers, Le Mans Université, CNRS, UMR 6112, Nantes, France.
  • Lopes RMC; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA.
  • Nixon CA; Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
  • Affholder A; Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA.
  • Chatain A; Departamento de Física Aplicada, Escuela de Ingeniería de Bilbao, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain.
  • Cockell C; UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom.
  • Farnsworth KK; NASA Postdoctoral Program Fellow, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
  • Higgins PM; Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada.
  • Miller KE; Southwest Research Institute, San Antonio, Texas, USA.
  • Soderlund KM; Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA.
Astrobiology ; 24(2): 177-189, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38306187
ABSTRACT
Titan has an organic-rich atmosphere and surface with a subsurface liquid water ocean that may represent a habitable environment. In this work, we determined the amount of organic material that can be delivered from Titan's surface to its ocean through impact cratering. We assumed that Titan's craters produce impact melt deposits composed of liquid water that can founder in its lower-density ice crust and estimated the amount of organic molecules that could be incorporated into these melt lenses. We used known yields for HCN and Titan haze hydrolysis to determine the amount of glycine produced in the melt lenses and found a range of possible flux rates of glycine from the surface to the subsurface ocean. These ranged from 0 to 1011 mol/Gyr for HCN hydrolysis and from 0 to 1014 mol/Gyr for haze hydrolysis. These fluxes suggest an upper limit for biomass productivity of ∼103 kgC/year from a glycine fermentation metabolism. This upper limit is significantly less than recent estimates of the hypothetical biomass production supported by Enceladus's subsurface ocean. Unless biologically available compounds can be sourced from Titan's interior, or be delivered from the surface by other mechanisms, our calculations suggest that even the most organic-rich ocean world in the Solar System may not be able to support a large biosphere.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saturno / Meio Ambiente Extraterreno Idioma: En Revista: Astrobiology Assunto da revista: BIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saturno / Meio Ambiente Extraterreno Idioma: En Revista: Astrobiology Assunto da revista: BIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Canadá