Decoding emotion with phase-amplitude fusion features of EEG functional connectivity network.
Neural Netw
; 172: 106148, 2024 Apr.
Article
em En
| MEDLINE
| ID: mdl-38309138
ABSTRACT
Decoding emotional neural representations from the electroencephalographic (EEG)-based functional connectivity network (FCN) is of great scientific importance for uncovering emotional cognition mechanisms and developing harmonious human-computer interactions. However, existing methods mainly rely on phase-based FCN measures (e.g., phase locking value [PLV]) to capture dynamic interactions between brain oscillations in emotional states, which fail to reflect the energy fluctuation of cortical oscillations over time. In this study, we initially examined the efficacy of amplitude-based functional networks (e.g., amplitude envelope correlation [AEC]) in representing emotional states. Subsequently, we proposed an efficient phase-amplitude fusion framework (PAF) to fuse PLV and AEC and used common spatial pattern (CSP) to extract fused spatial topological features from PAF for multi-class emotion recognition. We conducted extensive experiments on the DEAP and MAHNOB-HCI datasets. The results showed that (1) AEC-derived discriminative spatial network topological features possess the ability to characterize emotional states, and the differential network patterns of AEC reflect dynamic interactions in brain regions associated with emotional cognition. (2) The proposed fusion features outperformed other state-of-the-art methods in terms of classification accuracy for both datasets. Moreover, the spatial filter learned from PAF is separable and interpretable, enabling a description of affective activation patterns from both phase and amplitude perspectives.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Encéfalo
/
Emoções
Limite:
Humans
Idioma:
En
Revista:
Neural Netw
Assunto da revista:
NEUROLOGIA
Ano de publicação:
2024
Tipo de documento:
Article
País de publicação:
Estados Unidos