Your browser doesn't support javascript.
loading
Sustainable liquid metal-induced conductive nacre.
Yan, Jia; Zhou, Tianzhu; Peng, Jingsong; Wang, Huagao; Jiang, Lei; Cheng, Qunfeng.
Afiliação
  • Yan J; School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanc
  • Zhou T; School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanc
  • Peng J; School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.
  • Wang H; School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanc
  • Jiang L; School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanc
  • Cheng Q; School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanc
Sci Bull (Beijing) ; 69(7): 913-921, 2024 Apr 15.
Article em En | MEDLINE | ID: mdl-38320895
ABSTRACT
Nacre has inspired research to fabricate tough bulk composites for practical applications using inorganic nanomaterials as building blocks. However, with the considerable pressure to reduce global carbon emissions, preparing nacre-inspired composites remains a significant challenge using more economical and environmentally friendly building blocks. Here we demonstrate tough and conductive nacre by assembling aragonite platelets exfoliated from natural nacre, with liquid metal and sodium alginate used as the "mortar". The formation of GaOC coordination bonding between the gallium ions and sodium alginate molecules reduces the voids and improves compactness. The resultant conductive nacre exhibits much higher mechanical properties than natural nacre. It also shows excellent impact resistance attributed to the synergistic strengthening and toughening fracture mechanisms induced by liquid metal and sodium alginate. Furthermore, our conductive nacre exhibits exceptional self-monitoring sensitivity for maintaining structural integrity. The proposed strategy provides a novel avenue for turning natural nacre into a valuable green composite.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Bull (Beijing) Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Bull (Beijing) Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda