Your browser doesn't support javascript.
loading
Dapagliflozin improves podocytes injury in diabetic nephropathy via regulating cholesterol balance through KLF5 targeting the ABCA1 signalling pathway.
Sun, Jingshu; Zhang, Xinyu; Wang, Simeng; Chen, Dandan; Shu, Jianqiang; Chong, Nannan; Wang, Qinglian; Xu, Ying.
Afiliação
  • Sun J; Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
  • Zhang X; Department of Nephrology, Weifang People's Hospital, Weifang, Shandong, China.
  • Wang S; Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
  • Chen D; Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
  • Shu J; Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
  • Chong N; Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
  • Wang Q; Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
  • Xu Y; Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China. 15216401100@163.com.
Diabetol Metab Syndr ; 16(1): 38, 2024 Feb 07.
Article em En | MEDLINE | ID: mdl-38326870
ABSTRACT
Diabetic nephropathy (DN), one of the more prevalent microvascular complications in patients diagnosed with diabetes mellitus, is attributed as the main cause of end-stage renal disease (ESRD). Lipotoxicity in podocytes caused by hyperglycemia has been recognised as a significant pathology change, resulting in the deterioration of the glomerular filtration barrier. Research has demonstrated how dapagliflozin, a kind of SGLT2i, exhibits a multifaceted and powerful protective effect in DN, entirely independent of the hypoglycemic effect, with the specific mechanism verified. In this present study, we found that dapagliflozin has the potential to alleviate apoptosis and restore cytoskeleton triggered by high glucose (HG) in vivo and in vitro. We also discovered that dapagliflozin could mitigate podocyte cholesterol accumulation by restoring the expression of ABCA1, which is the key pathway for cholesterol outflows. This research also mechanistically demonstrates that the protective effect of dapagliflozin can be mediated by KLF-5, which is the upstream transcription factor of ABCA1. Taken together, our data suggest that dapagliflozin offers significant potential in alleviating podocyte injury and cholesterol accumulation triggered by high glucose. In terms of the mechanism, we herein reveal that dapagliflozin could accelerate cholesterol efflux by restoring the expression of ABCA1, which is directly regulated by KLF-5.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Diabetol Metab Syndr Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Diabetol Metab Syndr Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...