Your browser doesn't support javascript.
loading
High-Resolution Laminar Identification in Macaque Primary Visual Cortex Using Neuropixels Probes.
Zhang, Li A; Li, Peichao; Callaway, Edward M.
Afiliação
  • Zhang LA; The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
  • Li P; Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.
  • Callaway EM; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China.
bioRxiv ; 2024 Sep 22.
Article em En | MEDLINE | ID: mdl-38328229
ABSTRACT
Laminar electrode arrays allow simultaneous recording of activity of many cortical neurons and assignment to layers using current source density (CSD) analyses. Electrode arrays with 100-micron contact spacing have been used to estimate borders between layer 4 versus superficial or deep layers, but in macaque primary visual cortex (V1) there are far more layers, such as 4A which is only 50-100 microns thick. Neuropixels electrode arrays have 20-micron spacing, and thus could potentially discern thinner layers and more precisely identify laminar borders. Here we show that laminar distributions of CSDs lack consistency and the spatial resolution required for thin layers and accurate layer boundaries. To take full advantage of high density Neuropixels arrays, we have developed approaches based on higher resolution electrical signals and analyses, including spike waveforms and spatial spread, unit density, high-frequency action potential (AP) power spectrum, temporal power change, and coherence spectrum, that afford far higher resolution of laminar distinctions, including the ability to precisely detect the borders of even the thinnest layers of V1.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos