Your browser doesn't support javascript.
loading
Polystyrene nanoplastics inhibit beige fat function and exacerbate metabolic disorder in high-fat diet-fed mice.
Zhang, Lina; Wan, Baocheng; Zheng, Jiangfei; Chen, Liwei; Xuan, Ye; Zhang, Rong; Chen, Zhuo; Hu, Cheng; Zhang, Yi; Yan, Chonghuai.
Afiliação
  • Zhang L; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shang
  • Wan B; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
  • Zheng J; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
  • Chen L; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
  • Xuan Y; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
  • Zhang R; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
  • Chen Z; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China. Electronic address: zhuochen_tys0110@sjtu.edu.cn.
  • Hu C; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China. Electronic address: alfredhc@sjtu.edu.cn.
  • Zhang Y; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China. Electronic address: yi.zhang@sjtu.edu.cn.
  • Yan C; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shangha
Sci Total Environ ; 918: 170700, 2024 Mar 25.
Article em En | MEDLINE | ID: mdl-38331288
ABSTRACT
Global health concerns about micro- and nanoplastics are increasing. The newly discovered beige adipocytes play a vital role in energy homeostasis through their high thermogenic capacity upon activation. However, the effects of micro- and nanoplastics on beige adipocytes have not yet been studied. We investigated whether the effects of oral exposure to polystyrene nanoparticles (PS-NPs) on systemic metabolic performance can be induced by disrupting beige adipocyte function, and the potential mechanism. In the present study, C57BL/6J male mice were fed a high-fat diet (HFD) with or without PS-NPs exposure for 12 weeks to investigate the differences in metabolic performance. We also isolated stromal vascular fraction from C57BL/6J male mice to differentiate and prepare primary beige adipocyte cultures. Primary beige adipocytes were treated with PS-NPs on the sixth day of differentiation. The results showed that oral intake of PS-NPs exacerbated metabolic disorders of mice under HFD, including suppressed energy expenditure, increased fat mass and liver steatosis, decreased insulin sensitivity, disrupted glucose homeostasis, and decreased cold-tolerance capability compared with the control group. Intriguingly, we observed that, after a 12-week exposure, PS-NPs accumulated in the inguinal white adipose tissue (iWAT), a fat depot rich in beige adipocytes, further suppressing thermogenic gene programs, particularly the level of uncoupling protein 1 (UCP1), a master regulator in the browning process of beige adipocytes. These effects ultimately led to decreased energy expenditure and subsequent disorders of glucolipid metabolism. Mechanistically, we revealed that PS-NPs disrupt mitochondrial function and induce oxidative damage and inflammation in beige adipocytes to inhibit their function. These negative metabolic effects of PS-NPs were ameliorated by antioxidant supplementation. Our study is the first to demonstrate that PS-NPs exposure exacerbates metabolic disorder in HFD-fed mice by disrupting beige adipocyte function.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistência à Insulina / Obesidade Limite: Animals Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistência à Insulina / Obesidade Limite: Animals Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda