CRDet: A circle representation detector for lung granulomas based on multi-scale attention features with center point calibration.
Comput Med Imaging Graph
; 113: 102354, 2024 04.
Article
em En
| MEDLINE
| ID: mdl-38341946
ABSTRACT
Lung granuloma is a very common lung disease, and its specific diagnosis is important for determining the exact cause of the disease as well as the prognosis of the patient. And, an effective lung granuloma detection model based on computer-aided diagnostics (CAD) can help pathologists to localize granulomas, thereby improving the efficiency of the specific diagnosis. However, for lung granuloma detection models based on CAD, the significant size differences between granulomas and how to better utilize the morphological features of granulomas are both critical challenges to be addressed. In this paper, we propose an automatic method CRDet to localize granulomas in histopathological images and deal with these challenges. We first introduce the multi-scale feature extraction network with self-attention to extract features at different scales at the same time. Then, the features will be converted to circle representations of granulomas by circle representation detection heads to achieve the alignment of features and ground truth. In this way, we can also more effectively use the circular morphological features of granulomas. Finally, we propose a center point calibration method at the inference stage to further optimize the circle representation. For model evaluation, we built a lung granuloma circle representation dataset named LGCR, including 288 images from 50 subjects. Our method yielded 0.316 mAP and 0.571 mAR, outperforming the state-of-the-art object detection methods on our proposed LGCR.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Granuloma
/
Pulmão
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Comput Med Imaging Graph
Assunto da revista:
DIAGNOSTICO POR IMAGEM
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Estados Unidos