Your browser doesn't support javascript.
loading
Hybrid Topological Data Analysis and Deep Learning for Basal Cell Carcinoma Diagnosis.
Maurya, Akanksha; Stanley, R Joe; Lama, Norsang; Nambisan, Anand K; Patel, Gehana; Saeed, Daniyal; Swinfard, Samantha; Smith, Colin; Jagannathan, Sadhika; Hagerty, Jason R; Stoecker, William V.
Afiliação
  • Maurya A; Missouri University of Science &Technology, Rolla, MO, 65209, USA.
  • Stanley RJ; Missouri University of Science &Technology, Rolla, MO, 65209, USA. stanleyj@mst.edu.
  • Lama N; Missouri University of Science &Technology, Rolla, MO, 65209, USA.
  • Nambisan AK; Missouri University of Science &Technology, Rolla, MO, 65209, USA.
  • Patel G; University of Missouri, Columbia, MO, USA.
  • Saeed D; University of Missouri, Columbia, MO, USA.
  • Swinfard S; Missouri University of Science &Technology, Rolla, MO, 65209, USA.
  • Smith C; A.T. Still, University of Health Sciences, Kirksville, MO, USA.
  • Jagannathan S; University of Missouri, Kansas City Medical School, Kansas City, MO, USA.
  • Hagerty JR; S&A Technologies, Rolla, MO, USA.
  • Stoecker WV; S&A Technologies, Rolla, MO, USA.
J Imaging Inform Med ; 37(1): 92-106, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38343238
ABSTRACT
A critical clinical indicator for basal cell carcinoma (BCC) is the presence of telangiectasia (narrow, arborizing blood vessels) within the skin lesions. Many skin cancer imaging processes today exploit deep learning (DL) models for diagnosis, segmentation of features, and feature analysis. To extend automated diagnosis, recent computational intelligence research has also explored the field of Topological Data Analysis (TDA), a branch of mathematics that uses topology to extract meaningful information from highly complex data. This study combines TDA and DL with ensemble learning to create a hybrid TDA-DL BCC diagnostic model. Persistence homology (a TDA technique) is implemented to extract topological features from automatically segmented telangiectasia as well as skin lesions, and DL features are generated by fine-tuning a pre-trained EfficientNet-B5 model. The final hybrid TDA-DL model achieves state-of-the-art accuracy of 97.4% and an AUC of 0.995 on a holdout test of 395 skin lesions for BCC diagnosis. This study demonstrates that telangiectasia features improve BCC diagnosis, and TDA techniques hold the potential to improve DL performance.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: J Imaging Inform Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: J Imaging Inform Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Suíça