Your browser doesn't support javascript.
loading
Using visual attention estimation on videos for automated prediction of autism spectrum disorder and symptom severity in preschool children.
de Belen, Ryan Anthony J; Eapen, Valsamma; Bednarz, Tomasz; Sowmya, Arcot.
Afiliação
  • de Belen RAJ; School of Computer Science and Engineering, University of New South Wales, New South Wales, Australia.
  • Eapen V; School of Psychiatry, University of New South Wales, New South Wales, Australia.
  • Bednarz T; School of Art & Design, University of New South Wales, New South Wales, Australia.
  • Sowmya A; School of Computer Science and Engineering, University of New South Wales, New South Wales, Australia.
PLoS One ; 19(2): e0282818, 2024.
Article em En | MEDLINE | ID: mdl-38346053
ABSTRACT
Atypical visual attention in individuals with autism spectrum disorders (ASD) has been utilised as a unique diagnosis criterion in previous research. This paper presents a novel approach to the automatic and quantitative screening of ASD as well as symptom severity prediction in preschool children. We develop a novel computational pipeline that extracts learned features from a dynamic visual stimulus to classify ASD children and predict the level of ASD-related symptoms. Experimental results demonstrate promising performance that is superior to using handcrafted features and machine learning algorithms, in terms of evaluation metrics used in diagnostic tests. Using a leave-one-out cross-validation approach, we obtained an accuracy of 94.59%, a sensitivity of 100%, a specificity of 76.47% and an area under the receiver operating characteristic curve (AUC) of 96% for ASD classification. In addition, we obtained an accuracy of 94.74%, a sensitivity of 87.50%, a specificity of 100% and an AUC of 99% for ASD symptom severity prediction.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transtorno do Espectro Autista Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Child, preschool / Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Austrália País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transtorno do Espectro Autista Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Child, preschool / Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Austrália País de publicação: Estados Unidos