Your browser doesn't support javascript.
loading
Cross comparison representation learning for semi-supervised segmentation of cellular nuclei in immunofluorescence staining.
Ren, Jianran; Che, Jingyi; Gong, Peicong; Wang, Xiaojun; Li, Xiangning; Li, Anan; Xiao, Chi.
Afiliação
  • Ren J; State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Sanya 572025, China.
  • Che J; State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Sanya 572025, China.
  • Gong P; State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Sanya 572025, China.
  • Wang X; State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Sanya 572025, China.
  • Li X; State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Sanya 572025, China.
  • Li A; State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Sanya 572025, China; Britton Chance Center for Biomedical Photonics, Wu
  • Xiao C; State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Sanya 572025, China. Electronic address: xiaochi@hainanu.edu.cn.
Comput Biol Med ; 171: 108102, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38350398
ABSTRACT
The morphological analysis of cells from optical images is vital for interpreting brain function in disease states. Extracting comprehensive cell morphology from intricate backgrounds, common in neural and some medical images, poses a significant challenge. Due to the huge workload of manual recognition, automated neuron cell segmentation using deep learning algorithms with labeled data is integral to neural image analysis tools. To combat the high cost of acquiring labeled data, we propose a novel semi-supervised cell segmentation algorithm for immunofluorescence-stained cell image datasets (ISC), utilizing a mean-teacher semi-supervised learning framework. We include a "cross comparison representation learning block" to enhance the teacher-student model comparison on high-dimensional channels, thereby improving feature compactness and separability, which results in the extraction of higher-dimensional features from unlabeled data. We also suggest a new network, the Multi Pooling Layer Attention Dense Network (MPAD-Net), serving as the backbone of the student model to augment segmentation accuracy. Evaluations on the immunofluorescence staining datasets and the public CRAG dataset illustrate our method surpasses other top semi-supervised learning methods, achieving average Jaccard, Dice and Normalized Surface Dice (NSD) indicators of 83.22%, 90.95% and 81.90% with only 20% labeled data. The datasets and code are available on the website at https//github.com/Brainsmatics/CCRL.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Núcleo Celular Limite: Humans Idioma: En Revista: Comput Biol Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Núcleo Celular Limite: Humans Idioma: En Revista: Comput Biol Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos