Your browser doesn't support javascript.
loading
Significance of weather condition, human mobility, and vaccination on global COVID-19 transmission.
Auliya, Amandha Affa; Syafarina, Inna; Latifah, Arnida L.
Afiliação
  • Auliya AA; Research Center for Computing, National Research and Innovation Agency, Jl. Raya Jakarta Bogor KM 46, Cibinong, 16911, Indonesia; Sebelas Maret University, Jl. Ir Sutami No. 36, Surakarta, 57126, Indonesia.
  • Syafarina I; Research Center for Computing, National Research and Innovation Agency, Jl. Raya Jakarta Bogor KM 46, Cibinong, 16911, Indonesia.
  • Latifah AL; Research Center for Computing, National Research and Innovation Agency, Jl. Raya Jakarta Bogor KM 46, Cibinong, 16911, Indonesia; School of Computing, Telkom University, Jl. Telekomunikasi No. 1, Bandung, 40257, Indonesia. Electronic address: arnida.l.latifah@brin.go.id.
  • Wiharto; Sebelas Maret University, Jl. Ir Sutami No. 36, Surakarta, 57126, Indonesia.
Spat Spatiotemporal Epidemiol ; 48: 100635, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38355259
ABSTRACT
The transmission growth rate of infectious diseases, particularly COVID-19, has forced governments to take immediate control decisions. Previous studies have shown that human mobility, weather condition, and vaccination are potential factors influencing virus transmission. This study investigates the contribution of weather conditions, namely temperature and precipitation, human mobility, and vaccination to coronavirus transmission. Three machine learning models random forest (RF), XGBoost, and neural networks, are applied to predict the confirmed cases based on three aforementioned variables. All models' prediction are evaluated via spatial and temporal analysis. The spatial analysis observes the model performance over countries on certain times. The temporal analysis looks at the model prediction of each country during the specified period. The models' prediction results effectively indicate the transmission trend. The RF model performs best with a coefficient of determination of up to 89%. Meanwhile, all models confirm that vaccination is most significantly associated with COVID-19 cases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: COVID-19 Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Spat Spatiotemporal Epidemiol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Indonésia País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: COVID-19 Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Spat Spatiotemporal Epidemiol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Indonésia País de publicação: Holanda