Your browser doesn't support javascript.
loading
SARS-CoV-2 lineage assignments using phylogenetic placement/UShER are superior to pangoLEARN machine-learning method.
de Bernardi Schneider, Adriano; Su, Michelle; Hinrichs, Angie S; Wang, Jade; Amin, Helly; Bell, John; Wadford, Debra A; O'Toole, Áine; Scher, Emily; Perry, Marc D; Turakhia, Yatish; De Maio, Nicola; Hughes, Scott; Corbett-Detig, Russ.
Afiliação
  • de Bernardi Schneider A; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
  • Su M; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
  • Hinrichs AS; Department of Health and Mental Hygiene, New York City Public Health Laboratory, New York, NY 10016, USA.
  • Wang J; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
  • Amin H; Department of Health and Mental Hygiene, New York City Public Health Laboratory, New York, NY 10016, USA.
  • Bell J; Department of Health and Mental Hygiene, New York City Public Health Laboratory, New York, NY 10016, USA.
  • Wadford DA; California Department of Public Health (CDPH), VRDL/COVIDNet, Richmond, CA 94804, USA.
  • O'Toole Á; California Department of Public Health (CDPH), VRDL/COVIDNet, Richmond, CA 94804, USA.
  • Scher E; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK.
  • Perry MD; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK.
  • Turakhia Y; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
  • De Maio N; Department of Electrical and Computer Engineering, University of California San Diego, San Diego, CA 92093, USA.
  • Hughes S; European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SD, UK.
  • Corbett-Detig R; Department of Health and Mental Hygiene, New York City Public Health Laboratory, New York, NY 10016, USA.
Virus Evol ; 10(1): vead085, 2024.
Article em En | MEDLINE | ID: mdl-38361813
ABSTRACT
With the rapid spread and evolution of SARS-CoV-2, the ability to monitor its transmission and distinguish among viral lineages is critical for pandemic response efforts. The most commonly used software for the lineage assignment of newly isolated SARS-CoV-2 genomes is pangolin, which offers two methods of assignment, pangoLEARN and pUShER. PangoLEARN rapidly assigns lineages using a machine-learning algorithm, while pUShER performs a phylogenetic placement to identify the lineage corresponding to a newly sequenced genome. In a preliminary study, we observed that pangoLEARN (decision tree model), while substantially faster than pUShER, offered less consistency across different versions of pangolin v3. Here, we expand upon this analysis to include v3 and v4 of pangolin, which moved the default algorithm for lineage assignment from pangoLEARN in v3 to pUShER in v4, and perform a thorough analysis confirming that pUShER is not only more stable across versions but also more accurate. Our findings suggest that future lineage assignment algorithms for various pathogens should consider the value of phylogenetic placement.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Virus Evol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Virus Evol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido