Your browser doesn't support javascript.
loading
The global research of artificial intelligence in lung cancer: a 20-year bibliometric analysis.
Zhong, Ruikang; Gao, Tangke; Li, Jinghua; Li, Zexing; Tian, Xue; Zhang, Chi; Lin, Ximing; Wang, Yuehui; Gao, Lei; Hu, Kaiwen.
Afiliação
  • Zhong R; Beijing University of Chinese Medicine, Beijing, China.
  • Gao T; Beijing University of Chinese Medicine, Beijing, China.
  • Li J; Beijing University of Chinese Medicine, Beijing, China.
  • Li Z; Beijing University of Chinese Medicine, Beijing, China.
  • Tian X; Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
  • Zhang C; Beijing University of Chinese Medicine, Beijing, China.
  • Lin X; Beijing University of Chinese Medicine, Beijing, China.
  • Wang Y; Beijing University of Chinese Medicine, Beijing, China.
  • Gao L; Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
  • Hu K; Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
Front Oncol ; 14: 1346010, 2024.
Article em En | MEDLINE | ID: mdl-38371616
ABSTRACT

Background:

Lung cancer (LC) is the second-highest incidence and the first-highest mortality cancer worldwide. Early screening and precise treatment of LC have been the research hotspots in this field. Artificial intelligence (AI) technology has advantages in many aspects of LC and widely used such as LC early diagnosis, LC differential classification, treatment and prognosis prediction.

Objective:

This study aims to analyze and visualize the research history, current status, current hotspots, and development trends of artificial intelligence in the field of lung cancer using bibliometric methods, and predict future research directions and cutting-edge hotspots.

Results:

A total of 2931 articles published between 2003 and 2023 were included, contributed by 15,848 authors from 92 countries/regions. Among them, China (40%) with 1173 papers,USA (24.80%) with 727 papers and the India(10.2%) with 299 papers have made outstanding contributions in this field, accounting for 75% of the total publications. The primary research institutions were Shanghai Jiaotong University(n=66),Chinese Academy of Sciences (n=63) and Harvard Medical School (n=52).Professor Qian Wei(n=20) from Northeastern University in China were ranked first in the top 10 authors while Armato SG(n=458 citations) was the most co-cited authors. Frontiers in Oncology(121 publications; IF 2022,4.7; Q2) was the most published journal. while Radiology (3003 citations; IF 2022, 19.7; Q1) was the most co-cited journal. different countries and institutions should further strengthen cooperation between each other. The most common keywords were lung cancer, classification, cancer, machine learning and deep learning. Meanwhile, The most cited papers was Nicolas Coudray et al.2018.NAT MED(1196 Total Citations).

Conclusions:

Research related to AI in lung cancer has significant application prospects, and the number of scholars dedicated to AI-related research on lung cancer is continually growing. It is foreseeable that non-invasive diagnosis and precise minimally invasive treatment through deep learning and machine learning will remain a central focus in the future. Simultaneously, there is a need to enhance collaboration not only among various countries and institutions but also between high-quality medical and industrial entities.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Oncol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Oncol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Suíça