Your browser doesn't support javascript.
loading
Lskipk Lsatpase double mutants are necessary and sufficient for the compact plant architecture of butterhead lettuce.
Xie, Sai; Luo, Guangbao; An, Guanghui; Wang, Bincai; Kuang, Hanhui; Wang, Xin.
Afiliação
  • Xie S; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China.
  • Luo G; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China.
  • An G; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China.
  • Wang B; College of Horticulture, Henan Agricultural University, 450002 Zhengzhou, China.
  • Kuang H; North Park, Wuhan Academy of Agricultural Sciences, Wuhu Eco-park, Huangpi District, Wuhan, China.
  • Wang X; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China.
Hortic Res ; 11(2): uhad280, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38371637
ABSTRACT
Lettuce, an important leafy vegetable crop worldwide, has rich variations in plant architecture. Butterhead lettuce, a popular horticultural type, has a unique plant architecture with loose leafy heads. The genetic and molecular mechanisms for such a compact plant architecture remain unclear. In this study we constructed a segregating population through crossing a butterhead cultivar and a stem lettuce cultivar. Genetic analysis identified the LsKIPK gene, which encodes a kinase, as the candidate gene controlling butterhead plant architecture. The Lskipk gene in the butterhead parent had a nonsense mutation, leading to a partial predicted protein. CRISPR/Cas9 and complementation tests verified its functions in plant architecture. We showed that the loss of function of LsKIPK is necessary but not sufficient for the butterhead plant architecture. To identify additional genes required for butterhead lettuce, we crossed a butterhead cultivar and a crisphead cultivar, both with the mutated Lskipk gene. Genetic mapping identified a new gene encoding an ATPase contributing to butterhead plant architecture. Knockout and complementation tests showed that loss of function of LsATPase is also required for the development of butterhead plant architecture. The Lskipk Lsatpase double mutation could reduce leaf size and leaf angle, leading to butterhead plant architecture. Expression and cytology analysis indicated that the loss of function of LsKIPK and LsATPase contributed to butterhead plant architecture by regulating cell wall development, a regulatory mechanism different from that for crisphead. This study provides new gene resources and theory for the breeding of the crop ideotype.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Hortic Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Hortic Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido