Your browser doesn't support javascript.
loading
The UFM1 E3 ligase recognizes and releases 60S ribosomes from ER translocons.
Makhlouf, Linda; Peter, Joshua J; Magnussen, Helge M; Thakur, Rohan; Millrine, David; Minshull, Thomas C; Harrison, Grace; Varghese, Joby; Lamoliatte, Frederic; Foglizzo, Martina; Macartney, Thomas; Calabrese, Antonio N; Zeqiraj, Elton; Kulathu, Yogesh.
Afiliação
  • Makhlouf L; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
  • Peter JJ; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
  • Magnussen HM; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
  • Thakur R; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
  • Millrine D; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
  • Minshull TC; Translational Immunology, Cancer Biomarker Centre, Manchester CRUK Institute, Manchester, UK.
  • Harrison G; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
  • Varghese J; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
  • Lamoliatte F; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
  • Foglizzo M; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
  • Macartney T; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
  • Calabrese AN; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
  • Zeqiraj E; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
  • Kulathu Y; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK. e.zeqiraj@leeds.ac.uk.
Nature ; 627(8003): 437-444, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38383789
ABSTRACT
Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a 'writer' to a 'reader' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Proteína Pós-Traducional / Ubiquitina-Proteína Ligases / Retículo Endoplasmático / Subunidades Ribossômicas Maiores de Eucariotos Idioma: En Revista: Nature Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Proteína Pós-Traducional / Ubiquitina-Proteína Ligases / Retículo Endoplasmático / Subunidades Ribossômicas Maiores de Eucariotos Idioma: En Revista: Nature Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido