Your browser doesn't support javascript.
loading
MTD-YOLOv5: Enhancing marine target detection with multi-scale feature fusion in YOLOv5 model.
Lian-Suo, W E I; Shen-Hao, Huang; Long-Yu, Ma.
Afiliação
  • Lian-Suo WEI; School of information engineering, Suqian University, SuQian, jiangsu 223800, China.
  • Shen-Hao H; College of Computer & Control Engineering, Qiqihar University, Qiqihar, Heilongjiang, 161006, China.
  • Long-Yu M; College of Computer & Control Engineering, Qiqihar University, Qiqihar, Heilongjiang, 161006, China.
Heliyon ; 10(4): e26145, 2024 Feb 29.
Article em En | MEDLINE | ID: mdl-38390090
ABSTRACT
Underwater light attenuation leads to decreased image contrast. This reduction in contrast subsequently decreases target visibility. Additionally, marine target detection is challenging due to multi-scale problems from varying target-to-device distances, complex target clustering, and noise from waterborne particulates.To address these issues, we propose MTD-YOLOv5.Initially, we enhance image contrast with grayscale equalization and mitigate color shift issues through color space transformation.We then introduce a novel feature extraction module, PCBR, combining max pooling and convolution layers for more effective target feature extraction from the background.Furthermore, we present the Multi-Scale Perceptual Hybrid Pooling (MHP) module.This module integrates horizontal and vertical receptive fields to establish long-range dependencies, thereby capturing hidden target information in deep network feature maps. In the Labeled Fishes in the Wild test datasets, MTD-YOLOv5 achieves a precision of 88.1% and a mean Average Precision (mAP[0.5.95]) of 49.6%.These results represent improvements of 2.6% in precision and 0.4% in mAP over the original YOLOv5.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido