MTD-YOLOv5: Enhancing marine target detection with multi-scale feature fusion in YOLOv5 model.
Heliyon
; 10(4): e26145, 2024 Feb 29.
Article
em En
| MEDLINE
| ID: mdl-38390090
ABSTRACT
Underwater light attenuation leads to decreased image contrast. This reduction in contrast subsequently decreases target visibility. Additionally, marine target detection is challenging due to multi-scale problems from varying target-to-device distances, complex target clustering, and noise from waterborne particulates.To address these issues, we propose MTD-YOLOv5.Initially, we enhance image contrast with grayscale equalization and mitigate color shift issues through color space transformation.We then introduce a novel feature extraction module, PCBR, combining max pooling and convolution layers for more effective target feature extraction from the background.Furthermore, we present the Multi-Scale Perceptual Hybrid Pooling (MHP) module.This module integrates horizontal and vertical receptive fields to establish long-range dependencies, thereby capturing hidden target information in deep network feature maps. In the Labeled Fishes in the Wild test datasets, MTD-YOLOv5 achieves a precision of 88.1% and a mean Average Precision (mAP[0.5.95]) of 49.6%.These results represent improvements of 2.6% in precision and 0.4% in mAP over the original YOLOv5.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Heliyon
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Reino Unido