Your browser doesn't support javascript.
loading
Piezo1 expression in chondrocytes controls endochondral ossification and osteoarthritis development.
Brylka, Laura J; Alimy, Assil-Ramin; Tschaffon-Müller, Miriam E A; Jiang, Shan; Ballhause, Tobias Malte; Baranowsky, Anke; von Kroge, Simon; Delsmann, Julian; Pawlus, Eva; Eghbalian, Kian; Püschel, Klaus; Schoppa, Astrid; Haffner-Luntzer, Melanie; Beech, David J; Beil, Frank Timo; Amling, Michael; Keller, Johannes; Ignatius, Anita; Yorgan, Timur A; Rolvien, Tim; Schinke, Thorsten.
Afiliação
  • Brylka LJ; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • Alimy AR; Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • Tschaffon-Müller MEA; Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Baden-Württemberg, 89081, Ulm, Germany.
  • Jiang S; Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • Ballhause TM; Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • Baranowsky A; Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • von Kroge S; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • Delsmann J; Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • Pawlus E; Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • Eghbalian K; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • Püschel K; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • Schoppa A; Department Legal Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • Haffner-Luntzer M; Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Baden-Württemberg, 89081, Ulm, Germany.
  • Beech DJ; Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Baden-Württemberg, 89081, Ulm, Germany.
  • Beil FT; Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, LS2 9JT, Leeds, UK.
  • Amling M; Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • Keller J; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • Ignatius A; Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • Yorgan TA; Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Baden-Württemberg, 89081, Ulm, Germany.
  • Rolvien T; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
  • Schinke T; Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany. t.rolvien@uke.de.
Bone Res ; 12(1): 12, 2024 02 23.
Article em En | MEDLINE | ID: mdl-38395992
ABSTRACT
Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 (Piezo1Col2a1Cre), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1Col2a1Cre animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1Col2a1Cre mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoartrite / Cartilagem Articular / Osteófito Limite: Animals / Humans Idioma: En Revista: Bone Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha País de publicação: CHINA / CN / REPUBLIC OF CHINA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoartrite / Cartilagem Articular / Osteófito Limite: Animals / Humans Idioma: En Revista: Bone Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha País de publicação: CHINA / CN / REPUBLIC OF CHINA