Your browser doesn't support javascript.
loading
Inhibition of Pyruvate Dehydrogenase Kinase 4 Protects Cardiomyocytes from lipopolysaccharide-Induced Mitochondrial Damage by Reducing Lactate Accumulation.
Chen, Tangtian; Xie, Qiumin; Tan, Bin; Yi, Qin; Xiang, Han; Wang, Rui; Zhou, Qin; He, Bolin; Tian, Jie; Zhu, Jing; Xu, Hao.
Afiliação
  • Chen T; Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014,
  • Xie Q; Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
  • Tan B; Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014,
  • Yi Q; Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014,
  • Xiang H; Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014,
  • Wang R; Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014,
  • Zhou Q; Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014,
  • He B; Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014,
  • Tian J; Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014,
  • Zhu J; Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014,
  • Xu H; Department of Cardiovascular (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
Inflammation ; 2024 Feb 24.
Article em En | MEDLINE | ID: mdl-38401019
ABSTRACT
Mitochondrial dysfunction is considered one of the major pathogenic mechanisms of sepsis-induced cardiomyopathy (SIC). Pyruvate dehydrogenase kinase 4 (PDK4), a key regulator of mitochondrial metabolism, is essential for maintaining mitochondrial function. However, its specific role in SIC remains unclear. To investigate this, we established an in vitro model of septic cardiomyopathy using lipopolysaccharide (LPS)-induced H9C2 cardiomyocytes. Our study revealed a significant increase in PDK4 expression in LPS-treated H9C2 cardiomyocytes. Inhibiting PDK4 with dichloroacetic acid (DCA) improved cell survival, reduced intracellular lipid accumulation and calcium overload, and restored mitochondrial structure and respiratory capacity while decreasing lactate accumulation. Similarly, Oxamate, a lactate dehydrogenase inhibitor, exhibited similar effects to DCA in LPS-treated H9C2 cardiomyocytes. To further validate whether PDK4 causes cardiomyocyte and mitochondrial damage in SIC by promoting lactate production, we upregulated PDK4 expression using PDK4-overexpressing lentivirus in H9C2 cardiomyocytes. This resulted in elevated lactate levels, impaired mitochondrial structure, and reduced mitochondrial respiratory capacity. However, inhibiting lactate production reversed the mitochondrial dysfunction caused by PDK4 upregulation. In conclusion, our study highlights the pathogenic role of PDK4 in LPS-induced cardiomyocyte and mitochondrial damage by promoting lactate production. Therefore, targeting PDK4 and its downstream product lactate may serve as promising therapeutic approaches for treating SIC.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inflammation Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inflammation Ano de publicação: 2024 Tipo de documento: Article