Your browser doesn't support javascript.
loading
Overexpression of the Phosphatidylcholine:DiacylglycerolCholinephosphotransferase (PDCT) gene increases carbon flux toward triacylglycerol (TAG) synthesis in Camelinasativa seeds.
Abdullah, Hesham M; Pang, Na; Chilcoat, Benjamin; Shachar-Hill, Yair; Schnell, Danny J; Dhankher, Om Parkash.
Afiliação
  • Abdullah HM; Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA; Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA; Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt. Electronic address: abdull76@msu.e
  • Pang N; Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
  • Chilcoat B; Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA.
  • Shachar-Hill Y; Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
  • Schnell DJ; Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
  • Dhankher OP; Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA. Electronic address: parkash@umass.edu.
Plant Physiol Biochem ; 208: 108470, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38422576
ABSTRACT
Camelinasativa has considerable promise as a dedicated industrial oilseed crop. Its oil-based blends have been tested and approved as liquid transportation fuels. Previously, we utilized metabolomic and transcriptomic profiling approaches and identified metabolic bottlenecks that control oil production and accumulation in seeds. Accordingly, we selected candidate genes for the metabolic engineering of Camelina. Here we targeted the overexpression of Camelina PDCT gene, which encodes the phosphatidylcholine diacylglycerol cholinephosphotransferase enzyme. PDCT is proposed as a gatekeeper responsible for the interconversions of diacylglycerol (DAG) and phosphatidylcholine (PC) pools and has the potential to increase the levels of TAG in seeds. To confirm whether increased CsPDCT activity in developing Camelina seeds would enhance carbon flux toward increased levels of TAG and alter oil composition, we overexpressed the CsPDCT gene under the control of the seed-specific phaseolin promoter. Camelina transgenics exhibited significant increases in seed yield (19-56%), seed oil content (9-13%), oil yields per plant (32-76%), and altered polyunsaturated fatty acid (PUFA) content compared to their parental wild-type (WT) plants. Results from [14C] acetate labeling of Camelina developing embryos expressing CsPDCT in culture indicated increased rates of radiolabeled fatty acid incorporation into glycerolipids (up to 64%, 59%, and 43% higher in TAG, DAG, and PC, respectively), relative to WT embryos. We conclude that overexpression of PDCT appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, thereby further increasing oil yields in Camelina.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfatidilcolinas / Brassicaceae Idioma: En Revista: Plant Physiol Biochem Assunto da revista: BIOQUIMICA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfatidilcolinas / Brassicaceae Idioma: En Revista: Plant Physiol Biochem Assunto da revista: BIOQUIMICA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: França