Your browser doesn't support javascript.
loading
Kinase signalling adaptation supports dysfunctional mitochondria in disease.
Skalka, George L; Tsakovska, Mina; Murphy, Daniel J.
Afiliação
  • Skalka GL; School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
  • Tsakovska M; School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
  • Murphy DJ; School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
Front Mol Biosci ; 11: 1354682, 2024.
Article em En | MEDLINE | ID: mdl-38434478
ABSTRACT
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Mol Biosci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Mol Biosci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Reino Unido