Weight calibration in the joint modelling of medical cost and mortality.
Stat Methods Med Res
; 33(4): 728-742, 2024 Apr.
Article
em En
| MEDLINE
| ID: mdl-38444359
ABSTRACT
Joint modelling of longitudinal and time-to-event data is a method that recognizes the dependency between the two data types, and combines the two outcomes into a single model, which leads to more precise estimates. These models are applicable when individuals are followed over a period of time, generally to monitor the progression of a disease or a medical condition, and also when longitudinal covariates are available. Medical cost datasets are often also available in longitudinal scenarios, but these datasets usually arise from a complex sampling design rather than simple random sampling and such complex sampling design needs to be accounted for in the statistical analysis. Ignoring the sampling mechanism can lead to misleading conclusions. This article proposes a novel approach to the joint modelling of complex data by combining survey calibration with standard joint modelling. This is achieved by incorporating a new set of equations to calibrate the sampling weights for the survival model in a joint model setting. The proposed method is applied to data on anti-dementia medication costs and mortality in people with diagnosed dementia in New Zealand.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Projetos de Pesquisa
Limite:
Humans
Idioma:
En
Revista:
Stat Methods Med Res
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Nova Zelândia
País de publicação:
Reino Unido