Your browser doesn't support javascript.
loading
Perfluorinated Zinc Porphyrin Sensitized Photoelectrosynthetic Cells for Enhanced TEMPO-Mediated Benzyl Alcohol Oxidation.
Di Carlo, Gabriele; Albanese, Cecilia; Molinari, Alessandra; Carli, Stefano; Argazzi, Roberto; Minguzzi, Alessandro; Tessore, Francesca; Marchini, Edoardo; Caramori, Stefano.
Afiliação
  • Di Carlo G; Department of Chemistry, University of Milano, INSTM RU, Via Golgi 19, Milano 20133, Italy.
  • Albanese C; Department of Chemistry, University of Milano, INSTM RU, Via Golgi 19, Milano 20133, Italy.
  • Molinari A; Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, Ferrara 44121, Italy.
  • Carli S; Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, Ferrara 44121, Italy.
  • Argazzi R; CNR-ISOF c/o Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, Ferrara 44121, Italy.
  • Minguzzi A; Department of Chemistry, University of Milano, INSTM RU, Via Golgi 19, Milano 20133, Italy.
  • Tessore F; Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4a, Milano 20156, Italy.
  • Marchini E; Department of Chemistry, University of Milano, INSTM RU, Via Golgi 19, Milano 20133, Italy.
  • Caramori S; Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, Ferrara 44121, Italy.
ACS Appl Mater Interfaces ; 16(12): 14864-14882, 2024 Mar 27.
Article em En | MEDLINE | ID: mdl-38483816
ABSTRACT
This research introduces a novel series of perfluorinated Zn(II) porphyrins with positive oxidation potentials designed as sensitizers for photoelectrosynthetic cells, with a focus on promoting the oxidation of benzyl alcohol (BzOH) mediated by the 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO) organocatalyst. Three dyes, CLICK-3, CLICK-4, and BETA-4, are meticulously designed to explore the impact of substituents and their positions on the perfluorinated porphyrin ring in terms of redox potentials and energy level alignment when coupled with SnO2/TiO2-based photoanodes and TEMPO mediator. A comprehensive analysis utilizing spectroscopy, electrochemistry, photophysics, and computational techniques of the dyes in solution and sensitized thin films unveils an enhanced charge-separation character in the 4D-π-1A type BETA-4. Incorporating four dimethylamino donor groups at the periphery of the porphyrin ring and a BTD-accepting linker at the ß-pyrrolic position equips the structure with a more efficient donor-acceptor system. This enhancement ensures improved light-harvesting capacity, resulting in a doubled incident photon-to-current conversion efficiency (IPCE% ≃30%) in the presence of LiI compared to meso-substituted dyes CLICK-3 and CLICK-4. Sensitizing SnO2/TiO2 thin films with BETA-4 successfully promotes the photooxidation of benzyl alcohol (BzOH) in the presence of the rapid TEMPO radical catalyst, yielding photocurrents of approximately 125 µA/cm2 in an optimized TBPy/LiClO4/ACN electrolyte. Notably, when lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) replaces TBPy as the base for TEMPO-catalyzed BzOH oxidation, a remarkable photocurrent of around 800 µA/cm2 is achieved, marking one of the highest values reported for this photoelectrochemical reaction to date. This study underscores that the proper functionalization of perfluorinated zinc porphyrins positions these dyes as ideal candidates for sensitizing SnO2/TiO2 in the photodriven oxidation of BzOH. It also highlights the crucial role of carefully tuning electrolyte composition based on the electronic properties of molecular sensitizers.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Itália País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Itália País de publicação: Estados Unidos