Your browser doesn't support javascript.
loading
CONSULT-II: accurate taxonomic identification and profiling using locality-sensitive hashing.
Sapci, Ali Osman Berk; Rachtman, Eleonora; Mirarab, Siavash.
Afiliação
  • Sapci AOB; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, CA 92093, United States.
  • Rachtman E; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, CA 92093, United States.
  • Mirarab S; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, CA 92093, United States.
Bioinformatics ; 40(4)2024 03 29.
Article em En | MEDLINE | ID: mdl-38492564
ABSTRACT
MOTIVATION Taxonomic classification of short reads and taxonomic profiling of metagenomic samples are well-studied yet challenging problems. The presence of species belonging to groups without close representation in a reference dataset is particularly challenging. While k-mer-based methods have performed well in terms of running time and accuracy, they tend to have reduced accuracy for such novel species. Thus, there is a growing need for methods that combine the scalability of k-mers with increased sensitivity.

RESULTS:

Here, we show that using locality-sensitive hashing (LSH) can increase the sensitivity of the k-mer-based search. Our method, which combines LSH with several heuristics techniques including soft lowest common ancestor labeling and voting, is more accurate than alternatives in both taxonomic classification of individual reads and abundance profiling. AVAILABILITY AND IMPLEMENTATION CONSULT-II is implemented in C++, and the software, together with reference libraries, is publicly available on GitHub https//github.com/bo1929/CONSULT-II.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Software Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Software Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido