Your browser doesn't support javascript.
loading
On the Thermodynamic Equivalence of Grand Canonical, Infinite-Size, and Capacitor-Based Models in First-Principle Electrochemistry.
Kastlunger, Georg; Vijay, Sudarshan; Chen, Xi; Sharma, Shubham; Peterson, Andrew.
Afiliação
  • Kastlunger G; Catalysis Theory Center, Department of Physics, Technical University of Denmark, Fysikvej, 2800, Kongens Lyngby, Denmark.
  • Vijay S; Catalysis Theory Center, Department of Physics, Technical University of Denmark, Fysikvej, 2800, Kongens Lyngby, Denmark.
  • Chen X; School of Engineering, Brown University, Hope Street, Providence, RI, USA.
  • Sharma S; School of Engineering, Brown University, Hope Street, Providence, RI, USA.
  • Peterson A; School of Engineering, Brown University, Hope Street, Providence, RI, USA.
Chemphyschem ; 25(10): e202300950, 2024 May 17.
Article em En | MEDLINE | ID: mdl-38511569
ABSTRACT
First principles-based computational and theoretical methods are constantly evolving trying to overcome the many obstacles towards a comprehensive understanding of electrochemical processes on an atomistic level. One of the major challenges has been the determination of reaction energetics under a constant potential. Here, a theoretical framework was proposed applying standard electronic structure methods and extrapolating to the infinite-cell size limit where reactions do not alter the potential. Today, electronically grand canonical modifications to electronic structure methods, holding the potential constant by varying the number of electrons in a finite simulation cell, become increasingly popular. In this perspective, we show that these two schemes are thermodynamically equivalent. Further, we link these methods to capacitive models of the interface, in the limit that the capacitance of the charging components (whether continuum or atomistic) are equal and invariant along the reaction pathway. We benchmark the three approaches with an example of alkali cation adsorption on Pt(111) showing that all three approaches converge in the cases of Li, Na and K. For Cs, however, strong deviation from the ideal conditions leads to a spread in the respective results. We discuss the latter by highlighting the cases of broken equivalence and assumptions among the approaches.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chemphyschem Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Dinamarca País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chemphyschem Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Dinamarca País de publicação: Alemanha