Your browser doesn't support javascript.
loading
Unraveling the mechanism in l-Caldesmon regulating the osteogenic differentiation of PDLSCs: An innovative perspective.
Li, Yuejia; Mei, Ziyi; Deng, Pingmeng; Zhou, Sha; Qian, Aizhuo; Zhang, Xiya; Li, Jie.
Afiliação
  • Li Y; College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China.
  • Mei Z; College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China.
  • Deng P; College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China.
  • Zhou S; College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China.
  • Qian A; College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China.
  • Zhang X; College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China.
  • Li J; College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China.. E
Cell Signal ; 118: 111147, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38513808
ABSTRACT
Maxillofacial bone defect is one of the common symptoms in maxillofacial, which affects the function and aesthetics of maxillofacial region. Periodontal ligament stem cells (PDLSCs) are extensively used in bone tissue engineering. The mechanism that regulates the osteogenic differentiation of PDLSCs remains not fully elucidated. Previous studies demonstrated that l-Caldesmon (l-CALD, or CALD1) might be involved in the osteogenic differentiation of PDLSCs. Here, the mechanism by which CALD1 regulates the osteogenic differentiation of PDLSCs is investigated. The osteogenic differentiation of PDLSCs is enhanced with Cald1 knockdown. Whole transcriptome sequencing (RNA-seq) analysis shows that bone morphogenetic proteins (BMP) signaling pathway and Wingless type (Wnt) pathway have significant change with Cald1 knockdown, and the expressions of Wnt-induced secreted protein 1 (WISP1), BMP2, Smad1/5/9, and p-Smad1/5/9 are significantly upregulated, while Glycogen synthase kinase 3ß (GSK3ß) and p-GSK3ß are downregulated. In addition, subcutaneous implantation in nude mice shows that knockdown of Cald1 enhances the osteogenic differentiation of PDLSCs in vivo. Taken together, this study demonstrates that knockdown of Cald1 enhances the osteogenic differentiation of PDLSCs by BMP and Wnt signaling pathways, and provides a novel approach for subsequent clinical treatment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteogênese / Ligamento Periodontal Limite: Animals Idioma: En Revista: Cell Signal Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteogênese / Ligamento Periodontal Limite: Animals Idioma: En Revista: Cell Signal Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido