Your browser doesn't support javascript.
loading
A review of self-supervised, generative, and few-shot deep learning methods for data-limited magnetic resonance imaging segmentation.
Liu, Zelong; Kainth, Komal; Zhou, Alexander; Deyer, Timothy W; Fayad, Zahi A; Greenspan, Hayit; Mei, Xueyan.
Afiliação
  • Liu Z; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Kainth K; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Zhou A; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Deyer TW; East River Medical Imaging, New York, New York, USA.
  • Fayad ZA; Department of Radiology, Cornell Medicine, New York, New York, USA.
  • Greenspan H; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Mei X; Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
NMR Biomed ; 37(8): e5143, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38523402
ABSTRACT
Magnetic resonance imaging (MRI) is a ubiquitous medical imaging technology with applications in disease diagnostics, intervention, and treatment planning. Accurate MRI segmentation is critical for diagnosing abnormalities, monitoring diseases, and deciding on a course of treatment. With the advent of advanced deep learning frameworks, fully automated and accurate MRI segmentation is advancing. Traditional supervised deep learning techniques have advanced tremendously, reaching clinical-level accuracy in the field of segmentation. However, these algorithms still require a large amount of annotated data, which is oftentimes unavailable or impractical. One way to circumvent this issue is to utilize algorithms that exploit a limited amount of labeled data. This paper aims to review such state-of-the-art algorithms that use a limited number of annotated samples. We explain the fundamental principles of self-supervised learning, generative models, few-shot learning, and semi-supervised learning and summarize their applications in cardiac, abdomen, and brain MRI segmentation. Throughout this review, we highlight algorithms that can be employed based on the quantity of annotated data available. We also present a comprehensive list of notable publicly available MRI segmentation datasets. To conclude, we discuss possible future directions of the field-including emerging algorithms, such as contrastive language-image pretraining, and potential combinations across the methods discussed-that can further increase the efficacy of image segmentation with limited labels.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Aprendizado Profundo Limite: Humans Idioma: En Revista: NMR Biomed Assunto da revista: DIAGNOSTICO POR IMAGEM / MEDICINA NUCLEAR Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Aprendizado Profundo Limite: Humans Idioma: En Revista: NMR Biomed Assunto da revista: DIAGNOSTICO POR IMAGEM / MEDICINA NUCLEAR Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos
...