Your browser doesn't support javascript.
loading
Model-agnostic explanations for survival prediction models.
Suresh, Krithika; Görg, Carsten; Ghosh, Debashis.
Afiliação
  • Suresh K; Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.
  • Görg C; Department of Biostatistics and Informatics, University of Colorado, Aurora, Colorado, USA.
  • Ghosh D; Department of Biostatistics and Informatics, University of Colorado, Aurora, Colorado, USA.
Stat Med ; 43(11): 2161-2182, 2024 May 20.
Article em En | MEDLINE | ID: mdl-38530157
ABSTRACT
Advanced machine learning methods capable of capturing complex and nonlinear relationships can be used in biomedical research to accurately predict time-to-event outcomes. However, these methods have been criticized as "black boxes" that are not interpretable and thus are difficult to trust in making important clinical decisions. Explainable machine learning proposes the use of model-agnostic explainers that can be applied to predictions from any complex model. These explainers describe how a patient's characteristics are contributing to their prediction, and thus provide insight into how the model is arriving at that prediction. The specific application of these explainers to survival prediction models can be used to obtain explanations for (i) survival predictions at particular follow-up times, and (ii) a patient's overall predicted survival curve. Here, we present a model-agnostic approach for obtaining these explanations from any survival prediction model. We extend the local interpretable model-agnostic explainer framework for classification outcomes to survival prediction models. Using simulated data, we assess the performance of the proposed approaches under various settings. We illustrate application of the new methodology using prostate cancer data.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Modelos Estatísticos / Aprendizado de Máquina Limite: Humans / Male Idioma: En Revista: Stat Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Modelos Estatísticos / Aprendizado de Máquina Limite: Humans / Male Idioma: En Revista: Stat Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido