Your browser doesn't support javascript.
loading
Enhancing the Thermal Conductivity of CNT/AlN/Silicone Rubber Composites by Using CNTs Directly Grown on AlN to Achieve a Reduced Filler Filling Ratio.
Matsumoto, Naoyuki; Futaba, Don N; Yamada, Takeo; Kokubo, Ken.
Afiliação
  • Matsumoto N; Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan.
  • Futaba DN; Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan.
  • Yamada T; Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan.
  • Kokubo K; Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan.
Nanomaterials (Basel) ; 14(6)2024 Mar 15.
Article em En | MEDLINE | ID: mdl-38535677
ABSTRACT
Achieving the thermal conductivity required for efficient heat management in semiconductors and other devices requires the integration of thermally conductive ceramic fillers at concentrations of 60 vol% or higher. However, an increased filler content often negatively affects the mechanical properties of the composite matrix, limiting its practical applicability. To address this issue, in this paper, we present a new strategy to reduce the required ceramic filler content the use of a thermally conductive ceramic composite filler with carbon nanotubes (CNTs) grown on aluminum nitride (AlN). We combined catalyst coating technology with vacuum filtration to ensure that the catalyst was uniformly applied to micrometer-sized AlN particles, followed by the efficient and uniform synthesis of CNTs using a water-assisted process in a vertical furnace. By carefully controlling the number of vacuum filtration cycles and the growth time of the CNTs, we achieved precise control over the number and length of the CNT layers, thereby adjusting the properties of the composite to the intended specifications. When AlN/CNT hybrid fillers are incorporated into silicone rubber, while maintaining the mechanical properties of rubber, the thermal diffusivity achieved at reduced filler levels exceeds that of composites using AlN-only or simultaneous AlN and CNTs formulations. This demonstrates the critical influence of CNTs on AlN surfaces. Our study represents a significant advancement in the design of thermally conductive materials, with potential implications for a wide range of applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão País de publicação: Suíça