Your browser doesn't support javascript.
loading
The Sun's differential rotation is controlled by high-latitude baroclinically unstable inertial modes.
Bekki, Yuto; Cameron, Robert H; Gizon, Laurent.
Afiliação
  • Bekki Y; Max-Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany.
  • Cameron RH; Max-Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany.
  • Gizon L; Max-Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany.
Sci Adv ; 10(13): eadk5643, 2024 Mar 29.
Article em En | MEDLINE | ID: mdl-38536922
ABSTRACT
Rapidly rotating fluids have a rotation profile that depends only on the distance from the rotation axis, in accordance with the Taylor-Proudman theorem. Although the Sun was expected to be such a body, helioseismology showed that the rotation rate in the convection zone is closer to constant on radii. It has been postulated that this deviation is due to the poles being warmer than the equator by a few degrees. Using numerical simulations, we show that the pole-to-equator temperature difference cannot exceed 7 kelvin as a result of the back-reaction of the high-latitude baroclinically unstable inertial modes. The observed amplitudes of the modes further indicate that this maximum temperature difference is reached in the Sun. We conclude that the Sun's latitudinal differential rotation reaches its maximum allowed value.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Adv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Adv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha