Your browser doesn't support javascript.
loading
Applying image features of proximal paracancerous tissues in predicting prognosis of patients with hepatocellular carcinoma.
Lin, Siying; Yong, Juanjuan; Zhang, Lei; Chen, Xiaolong; Qiao, Liang; Pan, Weidong; Yang, Yuedong; Zhao, Huiying.
Afiliação
  • Lin S; School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Department of Pathology, Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
  • Yong J; Department of Pathology, Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
  • Zhang L; Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
  • Chen X; Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
  • Qiao L; Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia.
  • Pan W; Department of Pancreatic-Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
  • Yang Y; School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China. Electronic address: yangyd25@mail.sysu.edu.cn.
  • Zhao H; Department of Pathology, Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. Electronic address: zhaohy8@mail.sysu.edu.cn.
Comput Biol Med ; 173: 108365, 2024 May.
Article em En | MEDLINE | ID: mdl-38537563
ABSTRACT

BACKGROUND:

Most of the methods using digital pathological image for predicting Hepatocellular carcinoma (HCC) prognosis have not considered paracancerous tissue microenvironment (PTME), which are potentially important for tumour initiation and metastasis. This study aimed to identify roles of image features of PTME in predicting prognosis and tumour recurrence of HCC patients.

METHODS:

We collected whole slide images (WSIs) of 146 HCC patients from Sun Yat-sen Memorial Hospital (SYSM dataset). For each WSI, five types of regions of interests (ROIs) in PTME and tumours were manually annotated. These ROIs were used to construct a Lasso Cox survival model for predicting the prognosis of HCC patients. To make the model broadly useful, we established a deep learning method to automatically segment WSIs, and further used it to construct a prognosis prediction model. This model was tested by the samples of 225 HCC patients from the Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC).

RESULTS:

In predicting prognosis of the HCC patients, using the image features of manually annotated ROIs in PTME achieved C-index 0.668 in the SYSM testing dataset, which is higher than the C-index 0.648 reached by the model only using image features of tumours. Integrating ROIs of PTME and tumours achieved C-index 0.693 in the SYSM testing dataset. The model using automatically segmented ROIs of PTME and tumours achieved C-index of 0.665 (95% CI 0.556-0.774) in the TCGA-LIHC samples, which is better than the widely used methods, WSISA (0.567), DeepGraphSurv (0.593), and SeTranSurv (0.642). Finally, we found the Texture SumAverage Skew HV on immune cell infiltration and Texture related features on desmoplastic reaction are the most important features of PTME in predicting HCC prognosis. We additionally used the model in prediction HCC recurrence for patients from SYSM-training, SYSM-testing, and TCGA-LIHC datasets, indicating the important roles of PTME in the prediction.

CONCLUSIONS:

Our results indicate image features of PTME is critical for improving the prognosis prediction of HCC. Moreover, the image features related with immune cell infiltration and desmoplastic reaction of PTME are the most important factors associated with prognosis of HCC.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carcinoma Hepatocelular / Neoplasias Hepáticas Limite: Humans Idioma: En Revista: Comput Biol Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carcinoma Hepatocelular / Neoplasias Hepáticas Limite: Humans Idioma: En Revista: Comput Biol Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos