Your browser doesn't support javascript.
loading
Integrated distance sampling models for simple point counts.
Kéry, Marc; Royle, J Andrew; Hallman, Tyler; Robinson, W Douglas; Strebel, Nicolas; Kellner, Kenneth F.
Afiliação
  • Kéry M; Swiss Ornithological Institute, Sempach, Switzerland.
  • Royle JA; USGS Eastern Ecological Science Center, Laurel, Maryland, USA.
  • Hallman T; Swiss Ornithological Institute, Sempach, Switzerland.
  • Robinson WD; Department of Biology and Chemistry, Queens University of Charlotte, Charlotte, North Carolina, USA.
  • Strebel N; School of Environmental and Natural Sciences, Bangor University, Bangor, UK.
  • Kellner KF; Oak Creek Laboratory of Biology, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA.
Ecology ; 105(5): e4292, 2024 May.
Article em En | MEDLINE | ID: mdl-38538534
ABSTRACT
Point counts (PCs) are widely used in biodiversity surveys but, despite numerous advantages, simple PCs suffer from several problems detectability, and therefore abundance, is unknown; systematic spatiotemporal variation in detectability yields biased inferences, and unknown survey area prevents formal density estimation and scaling-up to the landscape level. We introduce integrated distance sampling (IDS) models that combine distance sampling (DS) with simple PC or detection/nondetection (DND) data to capitalize on the strengths and mitigate the weaknesses of each data type. Key to IDS models is the view of simple PC and DND data as aggregations of latent DS surveys that observe the same underlying density process. This enables the estimation of separate detection functions, along with distinct covariate effects, for all data types. Additional information from repeat or time-removal surveys, or variable survey duration, enables the separate estimation of the availability and perceptibility components of detectability with DS and PC data. IDS models reconcile spatial and temporal mismatches among data sets and solve the above-mentioned problems of simple PC and DND data. To fit IDS models, we provide JAGS code and the new "IDS()" function in the R package unmarked. Extant citizen-science data generally lack the information necessary to adjust for detection biases, but IDS models address this shortcoming, thus greatly extending the utility and reach of these data. In addition, they enable formal density estimation in hybrid designs, which efficiently combine DS with distance-free, point-based PC or DND surveys. We believe that IDS models have considerable scope in ecology, management, and monitoring.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biodiversidade / Modelos Biológicos Limite: Animals Idioma: En Revista: Ecology Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Suíça País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biodiversidade / Modelos Biológicos Limite: Animals Idioma: En Revista: Ecology Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Suíça País de publicação: Estados Unidos