Systematic Identification of Long Noncoding RNAs during Three Key Organogenesis Stages in Zebrafish.
Int J Mol Sci
; 25(6)2024 Mar 19.
Article
em En
| MEDLINE
| ID: mdl-38542412
ABSTRACT
Thousands of lncRNAs have been found in zebrafish embryogenesis and adult tissues, but their identification and organogenesis-related functions have not yet been elucidated. In this study, high-throughput sequencing was performed at three different organogenesis stages of zebrafish embryos that are important for zebrafish muscle development. The three stages were 10 hpf (hours post fertilization) (T1), 24 hpf (T2), and 36 hpf (T3). LncRNA gas5, associated with muscle development, was screened out as the next research target by high-throughput sequencing and qPCR validation. The spatiotemporal expression of lncRNA gas5 in zebrafish embryonic muscle development was studied through qPCR and in situ hybridization, and functional analysis was conducted using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9, CRISPR/Cas9). The results were as follows (1) A total of 1486 differentially expressed lncRNAs were identified between T2 and T1, among which 843 lncRNAs were upregulated and 643 were downregulated. The comparison with T3 and T2 resulted in 844 differentially expressed lncRNAs, among which 482 lncRNAs were upregulated and 362 lncRNAs were downregulated. A total of 2137 differentially expressed lncRNAs were found between T3 and T1, among which 1148 lncRNAs were upregulated and 989 lncRNAs were downregulated, including lncRNA gas5, which was selected as the target gene. (2) The results of spatiotemporal expression analysis showed that lncRNA gas5 was expressed in almost all detected embryos of different developmental stages (0, 2, 6, 10, 16, 24, 36, 48, 72, 96 hpf) and detected tissues of adult zebrafish. (3) After lncRNA gas5 knockout using CRISPR/Cas9 technology, the expression levels of detected genes related to muscle development and adjacent to lncRNA gas5 were more highly affected in the knockout group compared with the control group, suggesting that lncRNA gas5 may play a role in embryonic muscle development in zebrafish. (4) The results of the expression of the skeletal myogenesis marker myod showed that the expression of myod in myotomes was abnormal, suggesting that skeletal myogenesis was affected after lncRNA gas5 knockout. The results of this study provide an experimental basis for further studies on the role of lncRNA gas5 in the embryonic skeletal muscle development of zebrafish.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
RNA Longo não Codificante
Limite:
Animals
Idioma:
En
Revista:
Int J Mol Sci
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Suíça