Your browser doesn't support javascript.
loading
ROS mediated Cu[Fe(CN)5NO] nanoparticles for triple negative breast cancer: A detailed study in preclinical mouse model.
Tripathy, Sanchita; Haque, Shagufta; Londhe, Swapnali; Das, Sourav; Norbert, Caroline Celine; Chandra, Yogesh; Sreedhar, Bojja; Patra, Chitta Ranjan.
Afiliação
  • Tripathy S; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India.
  • Haque S; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India.
  • Londhe S; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India.
  • Das S; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India.
  • Norbert CC; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India.
  • Chandra Y; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India.
  • Sreedhar B; Department of Analytical & Structural ChemistryCSIR-Indian Institute of Chemical Technology, Uppal Road,Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India.
  • Patra CR; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India. Electronic address: crpatra@iict.res.
Biomater Adv ; 160: 213832, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38547763
ABSTRACT
Triple negative breast cancer (TNBC) is an aggressive form of tumor, more prevalent in younger women resulting in poor survival rate (2nd in cancer deaths) because of its asymptomatic existence. The most popular and convenient approach for the treatment of TNBC is chemotherapy which is associated with several limitations. Considering the importance of nanotechnology in health care system, in the present manuscript, we have designed and developed a simple, efficient, cost effective, and ecofriendly method for the synthesis of copper nitroprusside analogue nanoparticles (Cu[Fe(CN)5NO] which is abbreviated as CuNPANP that may be the potential anti-cancer nanomedicine for the treatment of TNBC. Copper (present in CuNPANP) is used because of its affordability, nutritional value and various biomedical applications. The CuNPANP are thoroughly characterized using several analytical techniques. The in vitro cell viability (in normal cells) and the ex vivo hemolysis assay reveal the biocompatible nature of CuNPANP. The anti-cancer activity of the CuNPANP is established in TNBC cells (MDA-MB-231 and 4T1) through several in vitro assays along with plausible mechanisms. The intraperitoneal administration of CuNPANP in orthotopic breast tumor model by transplanting 4T1 cells into the mammary fat pad of BALB/c mouse significantly inhibits the growth of breast carcinoma as well as increases the survival time of tumor-bearing mice. These results altogether potentiate the anti-cancer efficacy of CuNPANP as a smart therapeutic nanomedicine for treating TNBC in near future after bio-safety evaluation in large animals.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espécies Reativas de Oxigênio / Cobre / Neoplasias de Mama Triplo Negativas Limite: Animals / Female / Humans Idioma: En Revista: Biomater Adv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espécies Reativas de Oxigênio / Cobre / Neoplasias de Mama Triplo Negativas Limite: Animals / Female / Humans Idioma: En Revista: Biomater Adv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia País de publicação: Holanda