Your browser doesn't support javascript.
loading
3D-printed intracoronal restorations, occlusal and laminate veneers: Clinical relevance, properties, and behavior compared to milled restorations; a systematic review and meta-analysis.
Alghauli, Mohammed Ahmed; Alqutaibi, Ahmed Yaseen.
Afiliação
  • Alghauli MA; Department of Prosthodontics, College of Dentistry, Ibb University, Ibb, Yemen.
  • Alqutaibi AY; Department of Prosthodontics, College of Dentistry, Ibb University, Ibb, Yemen.
J Esthet Restor Dent ; 36(8): 1153-1170, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38551205
ABSTRACT

OBJECTIVES:

To assess the feasibility of producing 3D-printed intracoronal restorations, thin and ultrathin veneers, and to compare their mechanical behavior, accuracy, biological, and stain susceptibility to the currently applied milled restorations. MATERIALS AND

METHODS:

The databases were comprehensively searched for relevant records up to January 2024 without language restrictions. All studies that assessed 3D-printed partial coverage restorations including inlays, onlays, laminate, and occlusal veneers were retrieved.

RESULTS:

The web search yielded a total of 1142 records, with 8 additional records added from websites at a later stage. Only 17 records were ultimately included in the review. The included records compared 3D-printed; alumina-based- and zirconia ceramics, lithium disilicate ceramics, polymer infiltrated ceramics, polyetheretherketone (PEEK), resin composites, and acrylic resins to their CNC milled analogs. The pooled data indicated that it is possible to produce ultrathin restorations with a thickness of less than 0.2 mm. 3D-printed laminate veneers and intracoronal restorations exhibited superior trueness, as well as better marginal and internal fit compared to milled restorations (p < 0.05). However, it should be noted that the choice of materials and preparation design may influence these outcomes. In terms of cost, the initial investment and production expenses associated with 3D printing were significantly lower than those of CNC milling technology. Additionally, 3D printing was also shown to be more time-efficient.

CONCLUSIONS:

Using additive manufacturing technology to produce restorations with a thickness ranging from 0.1 to 0.2 mm is indeed feasible. The high accuracy of these restorations, contributes to their ability to resist caries progression, surpassing the minimum clinical threshold load of failure by a significant margin and reliable adhesion. However, before 3D-printed resin restorations can be widely adopted for clinical applications, further improvements are needed, particularly in terms of reducing their susceptibility to stains. CLINICAL

SIGNIFICANCE:

3D-printed intracoronal restorations and veneers are more time and cost-efficient, more accurate, and could provide a considerable alternative to the currently applied CNC milling. Some limitations still accompany the resin materials, but this could be overcome by further development of the materials and printing technology.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Facetas Dentárias / Impressão Tridimensional Limite: Humans Idioma: En Revista: J Esthet Restor Dent Assunto da revista: ODONTOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Iêmen

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Facetas Dentárias / Impressão Tridimensional Limite: Humans Idioma: En Revista: J Esthet Restor Dent Assunto da revista: ODONTOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Iêmen