Your browser doesn't support javascript.
loading
Anion-Cation Competition Chemistry for Comprehensive High-Performance Prussian Blue Analogs Cathodes.
Cui, Mangwei; Zhu, Yilong; Lei, Hao; Liu, Ao; Mo, Funian; Ouyang, Kefeng; Chen, Sheng; Lin, Xi; Chen, Zuhuang; Li, Kaikai; Jiao, Yan; Zhi, Chunyi; Huang, Yan.
Afiliação
  • Cui M; Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China.
  • Zhu Y; School of Chemical Engineering, The University of Adelaide, 5005, Adelaide, Australia.
  • Lei H; Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China.
  • Liu A; Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China.
  • Mo F; Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China.
  • Ouyang K; Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China.
  • Chen S; Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, 610064, Chengdu, China.
  • Lin X; Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China.
  • Chen Z; Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China.
  • Li K; Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China.
  • Jiao Y; School of Chemical Engineering, The University of Adelaide, 5005, Adelaide, Australia.
  • Zhi C; Department of Materials Science and Engineering, City University of Hong Kong, 999077, Hong Kong, China.
  • Huang Y; Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China.
Angew Chem Int Ed Engl ; 63(23): e202405428, 2024 Jun 03.
Article em En | MEDLINE | ID: mdl-38563631
ABSTRACT
The extensively studied Prussian blue analogs (PBAs) in various batteries are limited by their low discharge capacity, or subpar rate etc., which are solely reliant on the cation (de)intercalation mechanism. In contrast to the currently predominant focus on cations, we report the overlooked anion-cation competition chemistry (Cl-, K+, Zn2+) stimulated by high-voltage scanning. With our designed anion-cation combinations, the KFeMnHCF cathode battery delivers comprehensively superior discharge performance, including voltage plateau >2.0 V (vs. Zn/Zn2+), capacity >150 mAh g-1, rate capability with capacity maintenance above 96 % from 0.6 to 5 A g-1, and cyclic stability exceeding 3000 cycles. We further verify that such comprehensive improvement of electrochemical performance utilizing anion-cation competition chemistry is universal for different types of PBAs. Our work would pave a new and efficient road towards the next-generation high-performance PBAs cathode batteries.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...