Your browser doesn't support javascript.
loading
High-Entropy Engineering of Cubic SiP with Metallic Conductivity for Fast and Durable Li-Ion Batteries.
Li, Wenwu; Wang, Jeng-Han; Yang, Lufeng; Li, Yanhong; Yen, Hung-Yu; Chen, Jie; He, Lunhua; Liu, Zhiliang; Yang, Piaoping; Guo, Zaiping; Liu, Meilin.
Afiliação
  • Li W; School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  • Wang JH; School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea.
  • Yang L; Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
  • Li Y; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
  • Yen HY; Spallation Neutron Source Science Center, Dongguan, 523803, China.
  • Chen J; School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea.
  • He L; Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518060, China.
  • Liu Z; Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
  • Yang P; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
  • Guo Z; Spallation Neutron Source Science Center, Dongguan, 523803, China.
  • Liu M; Spallation Neutron Source Science Center, Dongguan, 523803, China.
Adv Mater ; 36(26): e2314054, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38573654
ABSTRACT
A cost-effective, scalable ball milling process is employed to synthesize the InGeSiP3 compound with a cubic ZnS structure, aiming to address the sluggish reaction kinetics of Si-based anodes for Lithium-ion batteries. Experimental measurements and first-principles calculations confirm that the synthesized InGeSiP3 exhibits significantly higher electronic conductivity, larger Li-ion diffusivity, and greater tolerance to volume change than its parent phases InGe (or Si)P2 or In (or Ge, or Si)P. These improvements stem from its elevated configurational entropy. Multiple characterizations validate that InGeSiP3 undergoes a reversible Li-storage mechanism that involves intercalation, followed by conversion and alloy reactions, resulting in a reversible capacity of 1733 mA h g-1 with an initial Coulombic efficiency of 90%. Moreover, the InGeSiP3-based electrodes exhibit exceptional cycling stability, retaining an 1121 mA h g-1 capacity with a retention rate of ≈87% after 1500 cycles at 2000 mA g-1 and remarkable high-rate capability, achieving 882 mA h g-1 at 10 000 mA g-1. Inspired by the distinctive characteristic of high entropy, the synthesis is extended to high entropy GaCu (or Zn)InGeSiP5, CuZnInGeSiP5, GaCuZnInGeSiP6, InGeSiP2S (or Se), and InGeSiPSSe. This endeavor overcomes the immiscibility of different metals and non-metals, paving the way for the electrochemical energy storage application of high-entropy silicon-phosphides.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Alemanha