Your browser doesn't support javascript.
loading
Silicone cryogel skeletons enhance the survival and mechanical integrity of hydrogel-encapsulated cell therapies.
Jeang, William J; Bochenek, Matthew A; Bose, Suman; Zhao, Yichao; Wong, Bryan M; Yang, Jiawei; Jiang, Alexis L; Langer, Robert; Anderson, Daniel G.
Afiliação
  • Jeang WJ; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Bochenek MA; David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Bose S; Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
  • Zhao Y; David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Wong BM; Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
  • Yang J; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Jiang AL; David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Langer R; Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
  • Anderson DG; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Sci Adv ; 10(14): eadk5949, 2024 Apr 05.
Article em En | MEDLINE | ID: mdl-38578991
ABSTRACT
The transplantation of engineered cells that secrete therapeutic proteins presents a promising method for addressing a range of chronic diseases. However, hydrogels used to encase and protect non-autologous cells from immune rejection often suffer from poor mechanical properties, insufficient oxygenation, and fibrotic encapsulation. Here, we introduce a composite encapsulation system comprising an oxygen-permeable silicone cryogel skeleton, a hydrogel matrix, and a fibrosis-resistant polymer coating. Cryogel skeletons enhance the fracture toughness of conventional alginate hydrogels by 23-fold and oxygen diffusion by 2.8-fold, effectively mitigating both implant fracture and hypoxia of encapsulated cells. Composite implants containing xenogeneic cells engineered to secrete erythropoietin significantly outperform unsupported alginate implants in therapeutic delivery over 8 weeks in immunocompetent mice. By improving mechanical resiliency and sustaining denser cell populations, silicone cryogel skeletons enable more durable and miniaturized therapeutic implants.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogéis / Criogéis Limite: Animals Idioma: En Revista: Sci Adv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogéis / Criogéis Limite: Animals Idioma: En Revista: Sci Adv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos